@article{IonescuBizicKarnataketal.2022, author = {Ionescu, Danny and Bizic, Mina and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Kasada, Minoru and Berger, Stella A. and Nejstgaard, Jens Christian and Ryo, Masahiro and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {From microbes to mammals: Pond biodiversity homogenization across different land-use types in an agricultural landscape}, series = {Ecological monographs}, volume = {92}, journal = {Ecological monographs}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1523}, pages = {28}, year = {2022}, abstract = {Local biodiversity patterns are expected to strongly reflect variation in topography, land use, dispersal boundaries, nutrient supplies, contaminant spread, management practices, and other anthropogenic influences. Contrary to this expectation, studies focusing on specific taxa revealed a biodiversity homogenization effect in areas subjected to long-term intensive industrial agriculture. We investigated whether land use affects biodiversity levels and community composition (alpha- and beta-diversity) in 67 kettle holes (KH) representing small aquatic islands embedded in the patchwork matrix of a largely agricultural landscape comprising grassland, forest, and arable fields. These KH, similar to millions of standing water bodies of glacial origin, spread across northern Europe, Asia, and North America, are physico-chemically diverse and differ in the degree of coupling with their surroundings. We assessed aquatic and sediment biodiversity patterns of eukaryotes, Bacteria, and Archaea in relation to environmental features of the KH, using deep-amplicon-sequencing of environmental DNA (eDNA). First, we asked whether deep sequencing of eDNA provides a representative picture of KH aquatic biodiversity across the Bacteria, Archaea, and eukaryotes. Second, we investigated if and to what extent KH biodiversity is influenced by the surrounding land use. We hypothesized that richness and community composition will greatly differ in KH from agricultural land use compared with KH in grasslands and forests. Our data show that deep eDNA amplicon sequencing is useful for in-depth assessments of cross-domain biodiversity comprising both micro- and macro-organisms, but has limitations with respect to single-taxa conservation studies. Using this broad method, we show that sediment eDNA, integrating several years to decades, depicts the history of agricultural land-use intensification. Aquatic biodiversity was best explained by seasonality, whereas land-use type explained little of the variation. We concluded that, counter to our hypothesis, land use intensification coupled with landscape wide nutrient enrichment (including atmospheric deposition), groundwater connectivity between KH and organismal (active and passive) dispersal in the tight network of ponds, resulted in a biodiversity homogenization in the KH water, leveling off today's detectable differences in KH biodiversity between land-use types. These findings have profound implications for measures and management strategies to combat current biodiversity loss in agricultural landscapes worldwide.}, language = {en} } @article{BizicIonescuKarnataketal.2022, author = {Bizic, Mina and Ionescu, Danny and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Berger, Stella A. and Nejstgaard, Jens C. and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {Land-use type temporarily affects active pond community structure but not gene expression patterns}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16348}, pages = {1716 -- 1734}, year = {2022}, abstract = {Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.}, language = {en} } @article{BozzoBhaleraoPradhanetal.2016, author = {Bozzo, Enrico and Bhalerao, V. and Pradhan, Prajal and Tomsick, J. and Romano, Patrizia and Ferrigno, Carlo and Chaty, S. and Oskinova, Lida and Manousakis, A. and Walter, R. and Falanga, M. and Campana, S. and Stella, L. and Ramolla, M. and Chini, R.}, title = {Multi-wavelength observations of IGR J17544-2619 from quiescence to outburst}, series = {Journal of geophysical research : Earth surface}, volume = {596}, journal = {Journal of geophysical research : Earth surface}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629311}, pages = {12}, year = {2016}, abstract = {In this paper we report on a long multi-wavelength observational campaign of the supergiant fast X-ray transient prototype IGR J17544-2619. A 150 ks-long observation was carried out simultaneously with XMM-Newton and NuSTAR, catching the source in an initial faint X-ray state and then undergoing a bright X-ray outburst lasting approximately 7 ks. We studied the spectral variability during outburst and quiescence by using a thermal and bulk Comptonization model that is typically adopted to describe the X-ray spectral energy distribution of young pulsars in high mass X-ray binaries. Although the statistics of the collected X-ray data were relatively high, we could neither confirm the presence of a cyclotron line in the broad-band spectrum of the source (0.5-40 keV), nor detect any of the previously reported tentative detections of the source spin period. The monitoring carried out with Swift/XRT during the same orbit of the system observed by XMM-Newton and NuSTAR revealed that the source remained in a low emission state for most of the time, in agreement with the known property of all supergiant fast X-ray transients being significantly sub-luminous compared to other supergiant X-ray binaries. Optical and infrared observations were carried out for a total of a few thousand seconds during the quiescence state of the source detected by XMM-Newton and NuSTAR. The measured optical and infrared magnitudes were slightly lower than previous values reported in the literature, but compatible with the known micro-variability of supergiant stars. UV observations obtained with the UVOT telescope on-board Swift did not reveal significant changes in the magnitude of the source in this energy domain compared to previously reported values.}, language = {en} } @misc{KuhlmannTschornAroltetal.2017, author = {Kuhlmann, Stella L. and Tschorn, Mira and Arolt, Volker and Beer, Katja and Brandt, Julia and Grosse, Laura and Haverkamp, Wilhelm and Mueller-Nordhorn, Jacqueline and Rieckmann, Nina and Waltenberger, Johannes and Warnke, Katharina and Hellweg, Rainer and Stroehle, Andreas}, title = {Serum brain-derived neurotrophic factor and depressive symptoms in coronary heart disease patients: Role of cognitive functions Reply}, series = {Psychoneuroendocrinology}, volume = {79}, journal = {Psychoneuroendocrinology}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4530}, doi = {10.1016/j.psyneuen.2017.02.010}, pages = {175 -- 176}, year = {2017}, language = {en} }