@article{BluethgenDormannPratietal.2012, author = {Bl{\"u}thgen, Nico and Dormann, Carsten F. and Prati, Daniel and Klaus, Valentin H. and Kleinebecker, Till and Hoelzel, Norbert and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and M{\"u}ller, J{\"o}rg and Nieschulze, Jens and Renner, Swen C. and Sch{\"o}ning, Ingo and Schumacher, Uta and Socher, Stephanie A. and Wells, Konstans and Birkhofer, Klaus and Buscot, Francois and Oelmann, Yvonne and Rothenw{\"o}hrer, Christoph and Scherber, Christoph and Tscharntke, Teja and Weiner, Christiane N. and Fischer, Markus and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {A quantitative index of land-use intensity in grasslands integrating mowing, grazing and fertilization}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {13}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2012.04.001}, pages = {207 -- 220}, year = {2012}, abstract = {Land use is increasingly recognized as a major driver of biodiversity and ecosystem functioning in many current research projects. In grasslands, land use is often classified by categorical descriptors such as pastures versus meadows or fertilized versus unfertilized sites. However, to account for the quantitative variation of multiple land-use types in heterogeneous landscapes, a quantitative, continuous index of land-use intensity (LUI) is desirable. Here we define such a compound, additive LUI index for managed grasslands including meadows and pastures. The LUI index summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site. We examined the performance of the LUI index to predict selected response variables on up to 150 grassland sites in the Biodiversity Exploratories in three regions in Germany(Alb, Hainich, Schorlheide). We tested the average Ellenberg nitrogen indicator values of the plant community, nitrogen and phosphorus concentration in the aboveground plant biomass, plant-available phosphorus concentration in the top soil, and soil C/N ratio, and the first principle component of these five response variables. The LUI index significantly predicted the principal component of all five response variables, as well as some of the individual responses. Moreover, vascular plant diversity decreased significantly with LUI in two regions (Alb and Hainich). Inter-annual changes in management practice were pronounced from 2006 to 2008, particularly due to variation in grazing intensity. This rendered the selection of the appropriate reference year(s) an important decision for analyses of land-use effects, whereas details in the standardization of the index were of minor importance. We also tested several alternative calculations of a LUI index, but all are strongly linearly correlated to the proposed index. The proposed LUI index reduces the complexity of agricultural practices to a single dimension and may serve as a baseline to test how different groups of organisms and processes respond to land use. In combination with more detailed analyses, this index may help to unravel whether and how land-use intensities, associated disturbance levels or other local or regional influences drive ecological processes.}, language = {en} } @article{TuerkeAndreasGossneretal.2012, author = {T{\"u}rke, Manfred and Andreas, Kerstin and Gossner, Martin M. and Kowalski, Esther and Lange, Markus and Boch, Steffen and Socher, Stephanie A. and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus and Meyh{\"o}fer, Rainer and Weisser, Wolfgang W.}, title = {Are gastropods, rather than ants, important dispersers of seeds of myrmecochorous forest herbs?}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {179}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {1}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/663195}, pages = {124 -- 131}, year = {2012}, abstract = {Seed dispersal by ants (myrmecochory) is widespread, and seed adaptations to myrmecochory are common, especially in the form of fatty appendices (elaiosomes). In a recent study, slugs were identified as seed dispersers of myrmecochores in a central European beech forest. Here we used 105 beech forest sites to test whether myrmecochore presence and abundance is related to ant or gastropod abundance and whether experimentally exposed seeds are removed by gastropods. Myrmecochorous plant cover was positively related to gastropod abundance but was negatively related to ant abundance. Gastropods were responsible for most seed removal and elaiosome damage, whereas insects (and rodents) played minor roles. These gastropod effects on seeds were independent of region or forest management. We suggest that terrestrial gastropods can generally act as seed dispersers of myrmecochorous plants and even substitute myrmecochory, especially where ants are absent or uncommon.}, language = {en} }