@article{BarbirzMuellerUetrechtetal.2008, author = {Barbirz, Stefanie and M{\"u}ller, J{\"u}rgen J. and Uetrecht, Charlotte and Clark, Alvin J. and Heinemann, Udo and Seckler, Robert}, title = {Crystal structure of Escherichia coli phage HK620 tailspike : podoviral tailspike endoglycosidase modules are evolutionarily related}, issn = {0950-382X}, year = {2008}, abstract = {Bacteriophage HK620 infects Escherichia coli H and is closely related to Shigella phage Sf6 and Salmonella phage P22. All three Podoviridae recognize and cleave their respective host cell receptor polysaccharide by homotrimeric tailspike proteins. The three proteins exhibit high sequence identity in the 110 residues of their N-terminal particle- binding domains, but no apparent sequence similarity in their major, receptor-binding parts. We have biochemically characterized the receptor-binding part of HK620 tailspike and determined its crystal structure to 1.38 {\AA} resolution. Its major domain is a right-handed parallel ;-helix, as in Sf6 and P22 tailspikes. HK620 tailspike has endo-N- acetylglucosaminidase activity and produces hexasaccharides of an O18A1-type O-antigen. As indicated by the structure of a hexasaccharide complex determined at 1.6 {\AA} resolution, the endoglycosidase-active sites are located intramolecularly, as in P22, and not between subunits, as in Sf6 tailspike. In contrast, the extreme C-terminal domain of HK620 tailspike forms a ;-sandwich, as in Sf6 and unlike P22 tailspike. Despite the different folds, structure-based sequence alignments of the C-termini reveal motifs conserved between the three proteins. We propose that the tailspike genes of P22, Sf6 and HK620 have a common precursor and are not mosaics of unrelated gene fragments.}, language = {en} } @article{MuellerBarbirzHeinleetal.2008, author = {M{\"u}ller, J{\"u}rgen J. and Barbirz, Stefanie and Heinle, Karolin and Freiberg, Alexander and Seckler, Robert and Heinemann, Udo}, title = {An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri phage Sf6}, doi = {10.1016/j.str.2008.01.019}, year = {2008}, abstract = {Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 {\AA} crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed ; helix. In the trimer of Sf6 TSP, the parallel ; helices form a left-handed, coiled;; coil with a pitch of 340 {\AA}. The C-terminal domain consists of a ; sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two ;-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture.}, language = {en} } @article{AndresBaxaHankeetal.2010, author = {Andres, Dorothee and Baxa, Ulrich and Hanke, Christin and Seckler, Robert and Barbirz, Stefanie}, title = {Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection}, issn = {0300-5127}, doi = {10.1042/Bst0381386}, year = {2010}, abstract = {TSPs (tailspike proteins) are essential infection organelles of bacteriophage P22. Upon infection, P22TSP binds to and cleaves the O-antigen moiety of the LPS (lipopolysaccharide) of its Salmonella host To elucidate the role of TSP during infection, we have studied binding to oligosaccharides and polysaccharides of Salmonella enteric Typhimurium and Enteritidis in vitro. P22TSP is a trimeric beta-helical protein with a carbohydrate-binding site on each subunit. Octasaccharide O-antigen fragments bind to P22TSP with micromolar dissociation constants. Moreover, P22TSP is an endorhamnosidase and cleaves the host O-antigen. Catalytic residues lie at the periphery of the high-affinity binding site, which enables unproductive binding modes, resulting in slow hydrolysis. However, the role of this hydrolysis function during infection remains unclear. Binding of polysaccharide to P22TSP is of high avidity with slow dissociation rates when compared with oligosaccharides. In vivo, the infection of Salmonella with phage P22 can be completely inhibited by the addition of LPS, indicating that binding of phage to its host via TSP is an essential step for infection.}, language = {en} }