@misc{RailaSchweigertKohn2017, author = {Raila, Jens and Schweigert, Florian J. and Kohn, Barbara}, title = {C-reactive protein concentrations in serum of dogs with naturally occurring renal disease}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402942}, pages = {6}, year = {2017}, abstract = {The current study was undertaken to investigate the relation between serum C-reactive protein (CRP) concentrations and parameters of renal function in dogs with naturally occurring renal disease. Dogs were assigned to groups according to plasma creatinine concentration, urinary protein-to-creatinine ratio (UP/UC), and exogenous plasma creatinine clearance (P-Cl(Cr)) rates. Group A (healthy control dogs; n = 8): non-azotemic (plasma creatinine <125 mu mol/l) and nonproteinuric (UP/UC <0.2), with P-Cl(Cr) rates >90 ml/min/m(2); group B (n = 11): non-azotemic, nonproteinuric dogs with reduced P-Cl(Cr) rates (50-89 ml/min/m(2)); group C (n = 7): azotemic, borderline proteinuric dogs (P-Cl(Cr) rates: 22-67 ml/min/m(2)); and group D (n = 6): uremic, proteinuric dogs (not tested for P-Cl(Cr)). The serum CRP concentrations were measured via commercial enzyme-linked immunosorbent assay. The CRP concentrations in the clinically healthy dogs (group A) ranged from 2.09 mg/l to 8.60 mg/l (median: 3.21 mg/l). In comparison with dogs of group A, median CRP concentrations were significantly (P < 0.01) elevated in dogs of group B (17.6 mg/l, range: 17.0-19.2 mg/l), group C (24.8 mg/l, range: 18.0-32.5 mg/l), and group D (59.7 mg/l, range: 17.7-123 mg/l). Serum CRP was significantly related to P-Cl(Cr) (r = -0.83; P < 0.001), plasma creatinine (r = 0.81; P < 0.001), UP/UC (r = 0.70; P < 0.001), and leukocytes (r = 0.49; P < 0.01). The significant relations between serum CRP concentrations and biochemical parameters of kidney function in plasma and urine suggest that a stimulation of the acute phase response is implicated in the pathogenesis of canine renal disease.}, language = {en} } @article{KilercikUcalSerdaretal.2022, author = {Kilercik, Meltem and Ucal, Yasemin and Serdar, Muhittin and Serteser, Mustafa and Ozpinar, Aysel and Schweigert, Florian J.}, title = {Zinc protoporphyrin levels in COVID-19 are indicative of iron deficiency and potential predictor of disease severity}, series = {PLoS ONE}, volume = {17}, journal = {PLoS ONE}, number = {2}, publisher = {PLOS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0262487}, pages = {16}, year = {2022}, abstract = {Background Coronavirus disease (COVID-19) has a severe impact on all aspects of patient care. Among the numerous biomarkers of potential validity for diagnostic and clinical management of COVID-19 are biomarkers at the interface of iron metabolism and inflammation. Methods The follow-up study included 54 hospitalized patients with laboratory-confirmed COVID-19 with a moderate and severe/critical form of the disease. Iron deficiency specific biomarkers such as iron, ferritin, transferrin receptor, hepcidin, and zinc protoporphyrin (ZnPP) as well as relevant markers of inflammation were evaluated twice: in the first five days when the patient was admitted to the hospital and during five to 15 days; and their validity to diagnose iron deficiency was further assessed. The regression and Receiver Operating Characteristics (ROC) analyses were performed to evaluate the prognosis and determine the probability for predicting the severity of the disease in the first five days of COVID-19. Results Based on hemoglobin values, anemia was observed in 21 of 54 patients. Of all iron deficiency anemia-related markers, only ZnPP was significantly elevated (P<0.001) in the anemic group. When patients were grouped according to the severity of disease, slight differences in hemoglobin or other anemia-related parameters could be observed. However, the levels of ZnPP were significantly increased in the severely ill group of patients. The ratio of ZnPP to lymphocyte count (ZnPP/L) had a discrimination power stronger than the neutrophil to lymphocyte count ratio (N/L) to determine disease severity. Additionally, only two markers were independently associated with the severity of COVID-19 in logistic regression analysis; D-dimer (OR (5.606)(95\% CI 1.019-30.867)) and ZnPP/L ratio (OR (74.313) (95\% CI 1.081-5108.103)). Conclusions For the first time ZnPP in COVID-19 patients were reported in this study. Among all iron-related markers tested, ZnPP was the only one that was associated with anemia as based on hemoglobin. The increase in ZnPP might indicate that the underlying cause of anemia in COVID-19 patients is not only due to the inflammation but also of nutritional origin. Additionally, the ZnPP/L ratio might be a valid prognostic marker for the severity of COVID-19.}, language = {en} } @article{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep37346}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time-and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @article{AlickeBoakyeAppiahAbdulJaliletal.2017, author = {Alicke, Marie and Boakye-Appiah, Justice K. and Abdul-Jalil, Inusah and Henze, Andrea and van der Giet, Markus and Schulze, Matthias Bernd and Schweigert, Florian J. and Mockenhaupt, Frank P. and Bedu-Addo, George and Danquah, Ina}, title = {eAdolescent health in rural Ghana: A crosssectional study on the co-occurrence of infectious diseases, malnutrition and cardiometabolic risk factors}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0180436}, pages = {4463 -- 4477}, year = {2017}, abstract = {In sub-Saharan Africa, infectious diseases and malnutrition constitute the main health problems in children, while adolescents and adults are increasingly facing cardio-metabolic conditions. Among adolescents as the largest population group in this region, we investigated the co-occurrence of infectious diseases, malnutrition and cardio-metabolic risk factors (CRFs), and evaluated demographic, socio-economic and medical risk factors for these entities. In a cross-sectional study among 188 adolescents in rural Ghana, malarial infection, common infectious diseases and Body Mass Index were assessed. We measured ferritin, C-reactive protein, retinol, fasting glucose and blood pressure. Socio-demographic data were documented. We analyzed the proportions (95\% confidence interval, CI) and the cooccurrence of infectious diseases (malaria, other common diseases), malnutrition (underweight, stunting, iron deficiency, vitamin A deficiency [VAD]), and CRFs (overweight, obesity, impaired fasting glucose, hypertension). In logistic regression, odds ratios (OR) and 95\% CIs were calculated for the associations with socio-demographic factors. In this Ghanaian population (age range, 14.4-15.5 years; males, 50\%), the proportions were for infectious diseases 45\% (95\% CI: 38-52\%), for malnutrition 50\% (43-57\%) and for CRFs 16\% (11- 21\%). Infectious diseases and malnutrition frequently co-existed (28\%; 21-34\%). Specifically, VAD increased the odds of non-malarial infectious diseases 3-fold (95\% CI: 1.03, 10.19). Overlap of CRFs with infectious diseases (6\%; 2-9\%) or with malnutrition (7\%; 3-11\%) was also present. Male gender and low socio-economic status increased the odds of infectious diseases and malnutrition, respectively. Malarial infection, chronic malnutrition and VAD remain the predominant health problems among these Ghanaian adolescents. Investigating the relationships with evolving CRFs is warranted.}, language = {en} } @misc{RailaKawashimaSauerweinetal.2017, author = {Raila, Jens and Kawashima, Chiho and Sauerwein, Helga and H{\"u}lsmann, Nadine and Knorr, Christoph and Myamoto, Akio and Schweigert, Florian J.}, title = {Validation of blood vitamin A concentrations in cattle: comparison of a new cow-side test (iCheck™ FLUORO) with high-performance liquid chromatography (HPLC)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401978}, pages = {6}, year = {2017}, abstract = {Background: Plasma concentration of retinol is an accepted indicator to assess the vitamin A (retinol) status in cattle. However, the determination of vitamin A requires a time consuming multi-step procedure, which needs specific equipment to perform extraction, centrifugation or saponification prior to high-performance liquid chromatography (HPLC). Methods: The concentrations of retinol in whole blood (n = 10), plasma (n = 132) and serum (n = 61) were measured by a new rapid cow-side test (iCheck™ FLUORO) and compared with those by HPLC in two independent laboratories in Germany (DE) and Japan (JP). Results: Retinol concentrations in plasma ranged from 0.033 to 0.532 mg/L, and in serum from 0.043 to 0.360 mg/L (HPLC method). No significant differences in retinol levels were observed between the new rapid cow-side test and HPLC performed in different laboratories (HPLC vs. iCheck™ FLUORO: 0.320 ± 0.047 mg/L vs. 0.333 ± 0.044 mg/L, and 0.240 ± 0.096 mg/L vs. 0.241 ± 0.069 mg/L, lab DE and lab JP, respectively). A similar comparability was observed when whole blood was used (HPLC vs. iCheck™ FLUORO: 0.353 ± 0.084 mg/L vs. 0.341 ± 0.064 mg/L). Results showed a good agreement between both methods based on correlation coefficients of r2 = 0.87 (P < 0.001) and Bland-Altman blots revealed no significant bias for all comparison. Conclusions: With the new rapid cow-side test (iCheck™ FLUORO) retinol concentrations in cattle can be reliably assessed within a few minutes and directly in the barn using even whole blood without the necessity of prior centrifugation. The ease of the application of the new rapid cow-side test and its portability can improve the diagnostic of vitamin A status and will help to control vitamin A supplementation in specific vitamin A feeding regimes such as used to optimize health status in calves or meat marbling in Japanese Black cattle.}, language = {en} } @article{RailaKawashimaSauerweinetal.2017, author = {Raila, Jens and Kawashima, Chiho and Sauerwein, Helga and H{\"u}lsmann, Nadine and Knorr, Christoph and Myamoto, Akio and Schweigert, Florian J.}, title = {Validation of blood vitamin A concentrations in cattle: comparison of a new cow-side test (iCheck™ FLUORO) with high-performance liquid chromatography (HPLC)}, series = {BMC veterinary research}, volume = {13}, journal = {BMC veterinary research}, publisher = {BioMed Central}, address = {London}, doi = {10.1186/s12917-017-1042-3}, year = {2017}, abstract = {Background: Plasma concentration of retinol is an accepted indicator to assess the vitamin A (retinol) status in cattle. However, the determination of vitamin A requires a time consuming multi-step procedure, which needs specific equipment to perform extraction, centrifugation or saponification prior to high-performance liquid chromatography (HPLC). Methods: The concentrations of retinol in whole blood (n = 10), plasma (n = 132) and serum (n = 61) were measured by a new rapid cow-side test (iCheck™ FLUORO) and compared with those by HPLC in two independent laboratories in Germany (DE) and Japan (JP). Results: Retinol concentrations in plasma ranged from 0.033 to 0.532 mg/L, and in serum from 0.043 to 0.360 mg/L (HPLC method). No significant differences in retinol levels were observed between the new rapid cow-side test and HPLC performed in different laboratories (HPLC vs. iCheck™ FLUORO: 0.320 ± 0.047 mg/L vs. 0.333 ± 0.044 mg/L, and 0.240 ± 0.096 mg/L vs. 0.241 ± 0.069 mg/L, lab DE and lab JP, respectively). A similar comparability was observed when whole blood was used (HPLC vs. iCheck™ FLUORO: 0.353 ± 0.084 mg/L vs. 0.341 ± 0.064 mg/L). Results showed a good agreement between both methods based on correlation coefficients of r2 = 0.87 (P < 0.001) and Bland-Altman blots revealed no significant bias for all comparison. Conclusions: With the new rapid cow-side test (iCheck™ FLUORO) retinol concentrations in cattle can be reliably assessed within a few minutes and directly in the barn using even whole blood without the necessity of prior centrifugation. The ease of the application of the new rapid cow-side test and its portability can improve the diagnostic of vitamin A status and will help to control vitamin A supplementation in specific vitamin A feeding regimes such as used to optimize health status in calves or meat marbling in Japanese Black cattle.}, language = {en} } @misc{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103674}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @article{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep37346}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @article{Schweigert2024, author = {Schweigert, Florian J.}, title = {H{\"a}sslich aber gut}, series = {Du sollst nicht essen: Warum Menschen auf Nahrung verzichten - interdisziplin{\"a}re Zug{\"a}nge}, journal = {Du sollst nicht essen: Warum Menschen auf Nahrung verzichten - interdisziplin{\"a}re Zug{\"a}nge}, editor = {Kollodzeiski, Ulrike and Hafner, Johann Evangelist}, publisher = {Ergon Verlag}, address = {Baden-Baden}, isbn = {978-3-98740-007-0}, doi = {10.5771/9783987400087}, pages = {47 -- 59}, year = {2024}, language = {de} } @book{KollodzeiskiHafnerLippertetal.2024, author = {Kollodzeiski, Ulrike and Hafner, Johann Evangelist and Lippert, Rachel N. and Bartelmeß, Tina and Schweigert, Florian J. and Bigalke, Bernadett and Krochmalnik, Daniel and Sanc{\i}, Kadir and Kardas, Arhan and Dietzel, Irene and Yilmaz, R{\"u}meysa and Olhoeft, Netanel and Struß, Lukas}, title = {Du sollst nicht essen}, editor = {Kollodzeiski, Ulrike and Hafner, Johann Evangelist}, publisher = {Ergon Verlag}, address = {Baden-Baden}, isbn = {978-3-98740-007-0}, doi = {10.5771/9783987400087}, year = {2024}, abstract = {Zwar sind Menschen biologisch gesehen Allesesser, dennoch gibt es keine Gemeinschaft, die alle ihr zur Verf{\"u}gung stehenden Nahrungsmittel voll aussch{\"o}pft. Immer wird etwas nicht gegessen. Warum wir nicht essen, was wir nicht essen - das beleuchtet dieser Sammelband aus neuro-, ern{\"a}hrungs-, gesellschafts- und religionswissenschaftlicher Perspektive. Ein „religi{\"o}ser Nutriscore" gibt Auskunft {\"u}ber die wichtigsten Verzichtsregeln in Judentum, Christentum und Islam. Eine Fotostrecke veranschaulicht, wie bestimmte Speisen zu Festen und Feiertagen zu einem heiligen Essen werden. Nicht zuletzt werden Wege aufgezeigt, wie Menschen, die verschiedene Speiseregeln befolgen, dennoch zusammen essen k{\"o}nnen - inklusive Praxistest in der Unimensa.}, language = {de} }