@article{QuiricoMorozSchmittetal.2016, author = {Quirico, E. and Moroz, Liubov V. and Schmitt, B. and Arnold, Gabriele and Faure, M. and Beck, P. and Bonal, L. and Ciarniello, M. and Capaccioni, F. and Filacchione, G. and Erard, S. and Leyrat, C. and Bockelee-Morvan, D. and Zinzi, A. and Palomba, E. and Drossart, P. and Tosi, F. and Capria, M. T. and De Sanctis, M. C. and Raponi, A. and Fonti, S. and Mancarella, F. and Orofino, V. and Barucci, A. and Blecka, M. I. and Carlson, R. and Despan, D. and Faure, A. and Fornasier, S. and Gudipati, M. S. and Longobardo, A. and Markus, K. and Mennella, V. and Merlin, F. and Piccioni, G. and Rousseau, B. and Taylor, F.}, title = {Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer}, series = {Icarus : international journal of solar system studies}, volume = {272}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, organization = {Rosetta VIRTIS Team}, issn = {0019-1035}, doi = {10.1016/j.icarus.2016.02.028}, pages = {32 -- 47}, year = {2016}, abstract = {The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument aboard the Rosetta spacecraft has performed extensive spectral mapping of the surface of comet 67P/Churyumov-Gerasimenko in the range 0.3-5 mu m. The reflectance spectra collected across the surface display a low reflectance factor over the whole spectral range, two spectral slopes in the visible and near-infrared ranges and a broad absorption band centered at 3.2 mu m. The first two of these characteristics are typical of dark small bodies of the Solar System and are difficult to interpret in terms of composition. Moreover, solar wind irradiation may modify the structure and composition of surface materials and there is no unequivocal interpretation of these spectra devoid of vibrational bands. To circumvent these problems, we consider the composition of cometary grains analyzed in the laboratory to constrain the nature of the cometary materials and consider results on surface rejuvenation and solar wind processing provided by the OSIRIS and ROSINA instruments, respectively. Our results lead to five main conclusions: (i) The low albedo of comet 67P/CG is accounted for by a dark refractory polyaromatic carbonaceous component mixed with opaque minerals. VIRTIS data do not provide direct insights into the nature of these opaque minerals. However, according to the composition of cometary grains analyzed in the laboratory, we infer that they consist of Fe-Ni alloys and FeS sulfides. (ii) A semi-volatile component, consisting of a complex mix of low weight molecular species not volatilized at T similar to 220 K, is likely a major carrier of the 3.2 p.m band. Water ice contributes significantly to this feature in the neck region but not in other regions of the comet. COOH in carboxylic acids is the only chemical group that encompasses the broad width of this feature. It appears as a highly plausible candidate along with the NH4+ ion. (iii) Photolytic/thermal residues, produced in the laboratory from interstellar ice analogs, are potentially good spectral analogs. (iv) No hydrated minerals were identified and our data support the lack of genetic links with the CI, CR and CM primitive chondrites. This concerns in particular the Orgueil chondrite, previously suspected to have been of cometary origin. (v) The comparison between fresh and aged terrains revealed no effect of solar wind irradiation on the 3.2 mu m band. This is consistent with the presence of efficient resurfacing processes such as dust transport from the interior to the surface, as revealed by the OSIRIS camera. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @article{UbaHaslerBuatoisetal.2009, author = {Uba, Cornelius Eji and Hasler, Claude-Alain and Buatois, Luis A. and Schmitt, Axel K. and Plessen, Birgit}, title = {Isotopic, paleontologic, and ichnologic evidence for late Miocene pulses of marine incursions in the central Andes}, issn = {0091-7613}, doi = {10.1130/G30014a.1}, year = {2009}, abstract = {Recognition of an inferred Miocene marine incursion affecting areas from Colombia through Peru and Bolivia and into Argentina is essential to delineate the South American Seaway. In Bolivia, corresponding strata of inferred marine origin have been assigned to the late Miocene Yecua Formation. We carried out high-resolution delta C-13 and delta O-18 isotopic studies on 135 in situ carbonates from 3 outcrops, combined with detailed sedimentologic, paleontologic, and ichnologic analysis. Four less negative delta C-13 excursion levels were recorded that coincide well with beds containing marine body (barnacle) and trace (Ophiomorpha) fossils. These strata are interbedded with red-green beds containing mudcracks, plant roots, gypsum, and trace fossils of the continental Scoyenia ichnofacies. Our data are significant in that they show for the first time four possible short-lived marine incursions in the Bolivian central Andes during the late Miocene. The result is constrained by a new U-Pb date of 7.17 +/- 0.34 Ma at the top of Yecua strata.}, language = {en} } @article{ToySutherlandTownendetal.2017, author = {Toy, Virginia Gail and Sutherland, Rupert and Townend, John and Allen, Michael J. and Becroft, Leeza and Boles, Austin and Boulton, Carolyn and Carpenter, Brett and Cooper, Alan and Cox, Simon C. and Daube, Christopher and Faulkner, D. R. and Halfpenny, Angela and Kato, Naoki and Keys, Stephen and Kirilova, Martina and Kometani, Yusuke and Little, Timothy and Mariani, Elisabetta and Melosh, Benjamin and Menzies, Catriona D. and Morales, Luiz and Morgan, Chance and Mori, Hiroshi and Niemeijer, Andre and Norris, Richard and Prior, David and Sauer, Katrina and Schleicher, Anja Maria and Shigematsu, Norio and Teagle, Damon A. H. and Tobin, Harold and Valdez, Robert and Williams, Jack and Yeo, Samantha and Baratin, Laura-May and Barth, Nicolas and Benson, Adrian and Boese, Carolin and C{\´e}l{\´e}rier, Bernard and Chamberlain, Calum J. and Conze, Ronald and Coussens, Jamie and Craw, Lisa and Doan, Mai-Linh and Eccles, Jennifer and Grieve, Jason and Grochowski, Julia and Gulley, Anton and Howarth, Jamie and Jacobs, Katrina and Janku-Capova, Lucie and Jeppson, Tamara and Langridge, Robert and Mallyon, Deirdre and Marx, Ray and Massiot, C{\´e}cile and Mathewson, Loren and Moore, Josephine and Nishikawa, Osamu and Pooley, Brent and Pyne, Alex and Savage, Martha K. and Schmitt, Doug and Taylor-Offord, Sam and Upton, Phaedra and Weaver, Konrad C. and Wiersberg, Thomas and Zimmer, Martin}, title = {Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand}, series = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, volume = {60}, journal = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, number = {4}, publisher = {Taylor \& Francis}, address = {Abingdon}, organization = {DFDP-2 Sci Team}, issn = {0028-8306}, doi = {10.1080/00288306.2017.1375533}, pages = {497 -- 518}, year = {2017}, abstract = {During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5-893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200-400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.}, language = {en} } @article{delPapaHongnPowelletal.2013, author = {del Papa, C. and Hongn, Fernando D. and Powell, J. and Payrola, P. and Do Campo, M. and Strecker, Manfred and Petrinovic, I. and Schmitt, A. K. and Pereyra, R.}, title = {Middle Eocene-Oligocene broken-foreland evolution in the Andean Calchaqui Valley, NW Argentina: insights from stratigraphic, structural and provenance studies}, series = {BASIN RESEARCH}, volume = {25}, journal = {BASIN RESEARCH}, number = {5}, publisher = {WILEY-BLACKWELL}, address = {HOBOKEN}, issn = {0950-091X}, doi = {10.1111/bre.12018}, pages = {574 -- 593}, year = {2013}, abstract = {Two end-member models have been proposed for the Paleogene Andean foreland: a simple W-E migrating foreland model and a broken-foreland model. We present new stratigraphic, sedimentological and structural data from the Paleogene Quebrada de los Colorados (QLC) Formation, in the Eastern Cordillera, with which to test these two different models. Basin-wide unconformities, growthstrata and changes in provenance indicate deposition of the QLC Formation in a tectonically active basin. Both west- and east-vergent structures, rooted in the basement, controlled the deposition and distribution of the QLC Formation from the Middle Eocene to the Early Miocene. The provenance analysis indicates that the main source areas were basement blocks, like the Paleozoic Oire Eruptive Complex, uplifted during Paleogene shortening, and that delimits the eastern boundary of the present-day intraorogenic Puna plateau. A comparison of the QLC sedimentary basin-fill pattern with those of adjacent Paleogene basins in the Puna plateau and in the Santa Barbara System highlights the presence of discrete depozones. These reflect the early compartmentalization of the foreland, rather than a stepwise advance of the deformation front of a thrust belt. The early Tertiary foreland of the southern central Andes is represented by a ca. 250-km-wide area comprising several deformation zones (Arizaro, Macon, Copalayo and Calchaqui) in which doubly vergent or asymmetric structures, rooted in the basement, were generated. Hence, classical foreland model is difficult to apply in this Paleogene basin; and our data and interpretation agree with a broken-foreland model.}, language = {en} } @article{PingelMulchAlonsoetal.2016, author = {Pingel, Heiko and Mulch, Andreas and Alonso, Ricardo N. and Cottle, John and Hynek, Scott A. and Poletti, Jacob and Rohrmann, Alexander and Schmitt, Axel K. and Stockli, Daniel F. and Strecker, Manfred}, title = {Surface uplift and convective rainfall along the southern Central Andes (Angastaco Basin, NW Argentina)}, series = {Earth \& planetary science letters}, volume = {440}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.02.009}, pages = {33 -- 42}, year = {2016}, abstract = {Stable-isotopic and sedimentary records from the orogenic Puna Plateau of NW Argentina and adjacent intermontane basins to the east furnish a unique late Cenozoic record of range uplift and ensuing paleoenvironmental change in the south-central Andes. Today, focused precipitation in this region occurs along the eastern, windward flanks of the Eastern Cordillera and Sierras Pampeanas ranges, while the orogen interior constitutes high-elevation regions with increasingly arid conditions in a westward direction. As in many mountain belts, such hydrologic and topographic gradients are commonly mirrored by a systematic relationship between the oxygen and hydrogen stable isotope ratios of meteoric water and elevation. The glass fraction of isotopically datable volcanic ash intercalated in sedimentary sequences constitutes an environmental proxy that retains a signal of the hydrogen-isotopic composition of ancient precipitation. This isotopic composition thus helps to elucidate the combined climatic and tectonic processes associated with topographic growth, which ultimately controls the spatial patterns of precipitation in mountain belts. However, between 25.5 and 27 degrees S present-day river-based hydrogen isotope lapse rates are very low, possibly due to deep-convective seasonal storms that dominate runoff. If not accounted for, the effects of such conditions on moisture availability in the past may lead to misinterpretations of proxy-records of rainfall. Here, we present hydrogen-isotope data of volcanic glass (delta Dg), extracted from 34 volcanic ash layers in different sedimentary basins of the Eastern Cordillera and the Sierras Pampeanas. Combined with previously published delta Dg records and our refined U-Pb and (U-Th)/He zircon geochronology on 17 tuff samples, we demonstrate hydrogen-isotope variations associated with paleoenvironmental change in the Angastaco Basin, which evolved from a contiguous foreland to a fault-bounded intermontane basin during the late Mio-Pliocene. We unravel the environmental impact of Mio-Pliocene topographic growth and associated orographic effects on long-term hydrogen-isotope records of rainfall in the south-central Andes, and potentially identify temporal variations in regional isotopic lapse rates that may also apply to other regions with similar topographic boundary conditions. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} }