@misc{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {957}, issn = {1866-8372}, doi = {10.25932/publishup-43123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431232}, pages = {15}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.}, language = {en} } @misc{SchroenKoehliScheiffeleetal.2017, author = {Schr{\"o}n, Martin and K{\"o}hli, Markus and Scheiffele, Lena and Iwema, Joost and Bogena, Heye R. and Lv, Ling and Martini, Edoardo and Baroni, Gabriele and Rosolem, Rafael and Weimar, Jannis and Mai, Juliane and Cuntz, Matthias and Rebmann, Corinna and Oswald, Sascha and Dietrich, Peter and Schmidt, Ulrich and Zacharias, Steffen}, title = {Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {636}, doi = {10.25932/publishup-41913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419134}, pages = {5009 -- 5030}, year = {2017}, abstract = {In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.}, language = {en} } @article{SchroenKoehliScheiffeleetal.2017, author = {Schr{\"o}n, Martin and K{\"o}hli, Markus and Scheiffele, Lena and Iwema, Joost and Bogena, Heye R. and Lv, Ling and Martini, Edoardo and Baroni, Gabriele and Rosolem, Rafael and Weimar, Jannis and Mai, Juliane and Cuntz, Matthias and Rebmann, Corinna and Oswald, Sascha and Dietrich, Peter and Schmidt, Ulrich and Zacharias, Steffen}, title = {Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity}, series = {Hydrology and earth system sciences : HESS}, volume = {21}, journal = {Hydrology and earth system sciences : HESS}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-21-5009-2017}, pages = {5009 -- 5030}, year = {2017}, abstract = {In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.}, language = {en} } @article{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {BMC ecology}, volume = {17}, journal = {BMC ecology}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/s12898-017-0118-z}, pages = {13}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk}, language = {en} }