@book{BauerHaedeBickenbachetal.2021, author = {Bauer, Hartmut and H{\"a}de, Ulrich and Bickenbach, Christian and Br{\"u}nneck von, Alexander and Haack, Stefan and Hebeler, Timo and Schmidt, Thorsten Ingo}, title = {Landesrecht Brandenburg}, series = {Nomos Studienbuch}, journal = {Nomos Studienbuch}, editor = {Peine, Franz-Joseph}, edition = {4. Auflage}, publisher = {Nomos}, address = {Baden-Baden}, isbn = {978-3-8487-6334-4}, doi = {10.5771/9783748904427}, pages = {334}, year = {2021}, abstract = {Das Studienbuch stellt in {\"u}bersichtlicher und systematischer Form die wichtigsten ausbildungsrelevanten Teile des brandenburgischen Verfassungs- und Verwaltungsrechts dar. Die Autoren gehen auf die f{\"u}r Examen und Praxis relevanten Kerngebiete (Verfassungsrecht, Verwaltungsorganisationsrecht, Kommunalrecht, Polizei- und Ordnungsrecht und Bauordnungsrecht) unter Einbeziehung von Rechtsprechung und Literatur ein. Zahlreiche Beispiele vereinfachen das Verst{\"a}ndnis und Klausurhinweise sch{\"a}rfen den Blick f{\"u}r fehlertr{\"a}chtige Fragestellungen.}, language = {de} } @article{WeimarKoehliBudachetal.2020, author = {Weimar, Jannis and K{\"o}hli, Markus and Budach, Christian and Schmidt, Ulrich}, title = {Large-scale boron-lined neutron detection systems as a 3He alternative for Cosmic Ray Neutron Sensing}, series = {Frontiers in water}, volume = {2}, journal = {Frontiers in water}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9375}, doi = {10.3389/frwa.2020.00016}, pages = {17}, year = {2020}, abstract = {Cosmic-Ray neutron sensors are widely used to determine soil moisture on the hectare scale. Precise measurements, especially in the case of mobile application, demand for neutron detectors with high counting rates and high signal-to-noise ratios. For a long time Cosmic Ray Neutron Sensing (CRNS) instruments have relied on He-3 as an efficient neutron converter. Its ongoing scarcity demands for technological solutions using alternative converters, which are Li-6 and B-10. Recent developments lead to a modular neutron detector consisting of several B-10-lined proportional counter tubes, which feature high counting rates via its large surface area. The modularity allows for individual shieldings of different segments within the detector featuring the capability of gaining spectral information about the detected neutrons. This opens the possibility for active signal correction, especially useful when applied to mobile measurements, where the influence of constantly changing near-field to the overall signal should be corrected. Furthermore, the signal-to-noise ratio could be increased by combining pulse height and pulse length spectra to discriminate between neutrons and other environmental radiation. This novel detector therefore combines high-selective counting electronics with large-scale instrumentation technology.}, language = {en} } @article{FischerMayerSchollImholtetal.2018, author = {Fischer, Stefan and Mayer-Scholl, Anne and Imholt, Christian and Spierling, Nastasja G. and Heuser, Elisa and Schmidt, Sabrina and Reil, Daniela and Rosenfeld, Ulrike M. and Jacob, Jens and N{\"o}ckler, Karsten and Ulrich, Rainer G.}, title = {Leptospira genomospecies and sequence type prevalence in small mammal populations in Germany}, series = {Vector-Borne and Zoonotic Diseases}, volume = {18}, journal = {Vector-Borne and Zoonotic Diseases}, number = {4}, publisher = {Liebert}, address = {New Rochelle}, issn = {1530-3667}, doi = {10.1089/vbz.2017.2140}, pages = {188 -- 199}, year = {2018}, abstract = {Leptospirosis is a worldwide emerging infectious disease caused by zoonotic bacteria of the genus Leptospira. Numerous mammals, including domestic and companion animals, can be infected by Leptospira spp., but rodents and other small mammals are considered the main reservoir. The annual number of recorded human leptospirosis cases in Germany (2001-2016) was 25-166. Field fever outbreaks in strawberry pickers, due to infection with Leptospira kirschneri serovar Grippotyphosa, were reported in 2007 and 2014. To identify the most commonly occurring Leptospira genomospecies, sequence types (STs), and their small mammal host specificity, a monitoring study was performed during 2010-2014 in four federal states of Germany. Initial screening of kidney tissues of 3,950 animals by PCR targeting the lipl32 gene revealed 435 rodents of 6 species and 89 shrews of three species positive for leptospiral DNA. PCR-based analyses resulted in the identification of the genomospecies L. kirschneri (62.7\%), Leptospira interrogans (28.3\%), and Leptospira borgpetersenii (9.0\%), which are represented by four, one, and two STs, respectively. The average Leptospira prevalence was highest (approximate to 30\%) in common voles (Microtus arvalis) and field voles (Microtus agrestis). Both species were exclusively infected with L. kirschneri. In contrast, in bank voles (Myodes glareolus) and yellow-necked mice (Apodemus flavicollis), DNA of all three genomospecies was detected, and in common shrews (Sorex araneus) DNA of L. kirschneri and L. borgpetersenii was identified. The association between individual infection status and demographic factors varied between species; infection status was always positively correlated to body weight. In conclusion, the study confirmed a broad geographical distribution of Leptospira in small mammals and suggested an important public health relevance of common and field voles as reservoirs of L. kirschneri. Furthermore, the investigations identified seasonal, habitat-related, as well as individual influences on Leptospira prevalence in small mammals that might impact public health.}, language = {en} } @article{FischerSpierlingHeuseretal.2018, author = {Fischer, Stefan and Spierling, Nastasja G. and Heuser, Elisa and Kling, Christopher and Schmidt, Sabrina and Rosenfeld, Ulrike M. and Reil, Daniela and Imholt, Christian and Jacob, Jens and Ulrich, Rainer G. and Essbauer, Sandra}, title = {High prevalence of Rickettsia helvetica in wild small mammal populations in Germany}, series = {Ticks and Tick-borne Diseases}, volume = {9}, journal = {Ticks and Tick-borne Diseases}, number = {3}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {1877-959X}, doi = {10.1016/j.ttbdis.2018.01.009}, pages = {500 -- 505}, year = {2018}, abstract = {Since the beginning of the 21st century, spotted fever rickettsioses are known as emerging diseases worldwide. Rickettsiae are obligately intracellular bacteria transmitted by arthropod vectors. The ecology of Rickettsia species has not been investigated in detail, but small mammals are considered to play a role as reservoirs. Aim of this study was to monitor rickettsiae in wild small mammals over a period of five years in four federal states of Germany. Initial screening of ear pinna tissues of 3939 animals by Pan-Rick real-time PCR targeting the citrate synthase (gltA) gene revealed 296 rodents of seven species and 19 shrews of two species positive for rickettsial DNA. Outer membrane protein gene (ompB, ompAIV) PCRs based typing resulted in the identification of three species: Rickettsia helvetica (90.9\%) was found as the dominantly occurring species in the four investigated federal states, but Rickettsia felis (7.8\%) and Rickettsia raoultii (1.3\%) were also detected. The prevalence of Rickettsia spp. in rodents of the genus Apodemus was found to be higher (approximately 14\%) than in all other rodent and shrew species at all investigated sites. General linear mixed model analyses indicated that heavier (older) individuals of yellow-necked mice and male common voles seem to contain more often rickettsial DNA than younger ones. Furthermore, rodents generally collected in forests in summer and autumn more often carried rickettsial DNA. In conclusion, this study indicated a high prevalence of R. helvetica in small mammal populations and suggests an age-dependent increase of the DNA prevalence in some of the species and in animals originating from forest habitats. The finding of R. helvetica and R. felis DNA in multiple small mammal species may indicate frequent trans-species transmission by feeding of vectors on different species. Further investigations should target the reason for the discrepancy between the high rickettsial DNA prevalence in rodents and the so far almost absence of clinical apparent human infections.}, language = {en} } @article{KnebelNeebZahnetal.2018, author = {Knebel, Constanze and Neeb, Jannika and Zahn, Elisabeth and Schmidt, Flavia and Carazo, Alejandro and Holas, Ondej and Pavek, Petr and P{\"u}schel, Gerhard Paul and Zanger, Ulrich M. and S{\"u}ssmuth, Roderich and Lampen, Alfonso and Marx-Stoelting, Philip and Braeuning, Albert}, title = {Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells}, series = {Toxicological sciences}, volume = {163}, journal = {Toxicological sciences}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1096-6080}, doi = {10.1093/toxsci/kfy026}, pages = {170 -- 181}, year = {2018}, abstract = {Analyzing mixture toxicity requires an in-depth understanding of the mechanisms of action of its individual components. Substances with the same target organ, same toxic effect and same mode of action (MoA) are believed to cause additive effects, whereas substances with different MoAs are assumed to act independently. Here, we tested 2 triazole fungicides, propiconazole, and tebuconazole (Te), for individual and combined effects on liver toxicity-related endpoints. Both triazoles are proposed to belong to the same cumulative assessment group and are therefore thought to display similar and additive behavior. Our data show that Te is an antagonist of the constitutive androstane receptor (CAR) in rats and humans, while propiconazole is an agonist of this receptor. Both substances activate the pregnane X-receptor (PXR) and further induce mRNA expression of CYP3A4. CYP3A4 enzyme activity, however, is inhibited by propiconazole. For common targets of PXR and CAR, the activation of PXR by Te overrides CAR inhibition. In summary, propiconazole and Te affect different hepatotoxicity-relevant cellular targets and, depending on the individual endpoint analyzed, act via similar or dissimilar mechanisms. The use of molecular data based on research in human cell systems extends the picture to refine cumulative assessment group grouping and substantially contributes to the understanding of mixture effects of chemicals in biological systems.}, language = {en} } @article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @misc{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike M. and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {957}, issn = {1866-8372}, doi = {10.25932/publishup-43123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431232}, pages = {15}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.}, language = {en} } @article{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike M. and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {BMC ecology}, volume = {17}, journal = {BMC ecology}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/s12898-017-0118-z}, pages = {13}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk}, language = {en} } @article{SchroenKoehliScheiffeleetal.2017, author = {Schroen, Martin and Koehli, Markus and Scheiffele, Lena and Iwema, Joost and Bogena, Heye R. and Lv, Ling and Martini, Edoardo and Baroni, Gabriele and Rosolem, Rafael and Weimar, Jannis and Mai, Juliane and Cuntz, Matthias and Rebmann, Corinna and Oswald, Sascha and Dietrich, Peter and Schmidt, Ulrich and Zacharias, Steffen}, title = {Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity}, series = {Hydrology and earth system sciences : HESS}, volume = {21}, journal = {Hydrology and earth system sciences : HESS}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-21-5009-2017}, pages = {5009 -- 5030}, year = {2017}, abstract = {In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.}, language = {en} } @misc{SchroenKoehliScheiffeleetal.2017, author = {Schr{\"o}n, Martin and K{\"o}hli, Markus and Scheiffele, Lena and Iwema, Joost and Bogena, Heye R. and Lv, Ling and Martini, Edoardo and Baroni, Gabriele and Rosolem, Rafael and Weimar, Jannis and Mai, Juliane and Cuntz, Matthias and Rebmann, Corinna and Oswald, Sascha and Dietrich, Peter and Schmidt, Ulrich and Zacharias, Steffen}, title = {Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {636}, doi = {10.25932/publishup-41913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419134}, pages = {5009 -- 5030}, year = {2017}, abstract = {In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.}, language = {en} }