@misc{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {19}, doi = {10.25932/publishup-56537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565379}, pages = {14}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {99}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {4}, publisher = {Elsevier}, address = {New York}, organization = {Lifelines Cohort Study
Regeneron Genetics Ctr}, issn = {0085-2538}, doi = {10.1016/j.kint.2020.09.030}, pages = {926 -- 939}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @inproceedings{KurbelNowakAzodietal.2015, author = {Kurbel, Karl and Nowak, Dawid and Azodi, Amir and Jaeger, David and Meinel, Christoph and Cheng, Feng and Sapegin, Andrey and Gawron, Marian and Morelli, Frank and Stahl, Lukas and Kerl, Stefan and Janz, Mariska and Hadaya, Abdulmasih and Ivanov, Ivaylo and Wiese, Lena and Neves, Mariana and Schapranow, Matthieu-Patrick and F{\"a}hnrich, Cindy and Feinbube, Frank and Eberhardt, Felix and Hagen, Wieland and Plauth, Max and Herscheid, Lena and Polze, Andreas and Barkowsky, Matthias and Dinger, Henriette and Faber, Lukas and Montenegro, Felix and Czach{\´o}rski, Tadeusz and Nycz, Monika and Nycz, Tomasz and Baader, Galina and Besner, Veronika and Hecht, Sonja and Schermann, Michael and Krcmar, Helmut and Wiradarma, Timur Pratama and Hentschel, Christian and Sack, Harald and Abramowicz, Witold and Sokolowska, Wioletta and Hossa, Tymoteusz and Opalka, Jakub and Fabisz, Karol and Kubaczyk, Mateusz and Cmil, Milena and Meng, Tianhui and Dadashnia, Sharam and Niesen, Tim and Fettke, Peter and Loos, Peter and Perscheid, Cindy and Schwarz, Christian and Schmidt, Christopher and Scholz, Matthias and Bock, Nikolai and Piller, Gunther and B{\"o}hm, Klaus and Norkus, Oliver and Clark, Brian and Friedrich, Bj{\"o}rn and Izadpanah, Babak and Merkel, Florian and Schweer, Ilias and Zimak, Alexander and Sauer, J{\"u}rgen and Fabian, Benjamin and Tilch, Georg and M{\"u}ller, David and Pl{\"o}ger, Sabrina and Friedrich, Christoph M. and Engels, Christoph and Amirkhanyan, Aragats and van der Walt, Est{\´e}e and Eloff, J. H. P. and Scheuermann, Bernd and Weinknecht, Elisa}, title = {HPI Future SOC Lab}, editor = {Meinel, Christoph and Polze, Andreas and Oswald, Gerhard and Strotmann, Rolf and Seibold, Ulrich and Schulzki, Bernhard}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102516}, pages = {iii, 154}, year = {2015}, abstract = {Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Erm{\"o}glichung und F{\"o}rderung des Austausches zwischen Forschungsgemeinschaft und Industrie. Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei f{\"u}r Forschungszwecke zur Verf{\"u}gung gestellt. Dazu z{\"a}hlen teilweise noch nicht am Markt verf{\"u}gbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren w{\"a}ren, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien. In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2015 vorgestellt. Ausgew{\"a}hlte Projekte stellten ihre Ergebnisse am 15. April 2015 und 4. November 2015 im Rahmen der Future SOC Lab Tag Veranstaltungen vor.}, language = {en} } @article{PazHeydenreichSchmidtetal.2018, author = {Paz, Cristian and Heydenreich, Matthias and Schmidt, Bernd and Vadra, Nahir and Baggio, Ricardo}, title = {Three new dihydro-beta-agarofuran sesquiterpenes from the seeds of Maytenus boaria}, series = {Acta Crystallographica Section C}, volume = {74}, journal = {Acta Crystallographica Section C}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2053-2296}, doi = {10.1107/S2053229618005429}, pages = {564 -- 570}, year = {2018}, abstract = {As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new beta-agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9-dihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b] oxepine-5,10-diylbis(furan-3-carboxylate), C27H32O11, (II), (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a, 9-tetramethyloctahydro-2H-3,9a-methanobenzo[ b] oxepine-5,10-diyl bis(furan-3-carboxylate), C27H32O10, (III), and (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-10-(benzoyloxy)-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepin-5-yl furan-3-carboxylate, C29H34O9, (IV), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C73, 451-457]. In the (isomorphic) structures of (II) and (III), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in (II) and no substituent in (III). This position is also unsubstituted in (IV), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S, 4S, 5S, 6R, 7R, 8R, 9R, 10S in (II) and 1S, 4S, 5S, 6R, 7R, 9S, 10S in (III) and (IV), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in (II) and H in (III) and (IV). This diversity in substitution, in turn, is responsible for the differences in the hydrogen-bonding schemes, which is discussed.}, language = {en} } @article{WilkeSchmidtFargesetal.2006, author = {Wilke, Max and Schmidt, Christian and Farges, Francois and Malavergne, Valerie and Gautron, Laurent and Simionovici, Alexandre and Hahn, Matthias and Petit, Pierre-Emanuel}, title = {Structural environment of iron in hydrous aluminosilicate glass and melt-evidence from X-ray absorption spectroscopy}, doi = {10.1016/j.chemgeo.2006.01.017}, year = {2006}, abstract = {The iron speciation in hydrous haplotonalitic and haplogranitic silicate glasses was studied using XAFS spectroscopy and transmission electron microscopy (TEM). Spectral features occurring at the main crest of the XANES at the iron K-edge of hydrous glasses indicate contributions to the spectra by iron-moieties present in a more ordered structural environment than found in the dry glass. These differences are also suggested by analysis of the EXAFS. These effects are not completely suppressed even for those samples that were quenched with a higher cooling rate. Strongest differences to the dry glass are observed for a sample that was quenched slowly through the temperature of glass transformation. Crystals (60 to 1500 nm in size) of magnetite, maghemite and another unidentified phase were observed in this sample by TEM, whereas no crystals were found in samples quenched with regular or high cooling rates. In-situ XANES measurements up to 700 degrees C and 500 MPa were performed to reveal the origin (i.e., during synthesis or quench) of the structural differences for those hydrous glasses that do not display any detectable crystallization. The comparison of XANES spectra collected on Fe2+ in water-saturated haplogranitic melt at 700 degrees C and 500 MPa and on Fe2+ in dry melt at 1150 degrees C shows that the local structural environment of Fe2+ in both systems is similar. This indicates that there is no detectable and direct influence of water on the local structure around iron in this type of melt. Hence, the differences observed between hydrous and dry glasses can only be related to artefacts formed during the quench process. (c) 2006 Elsevier B.V. All rights reserved}, language = {en} } @article{MeyerWituckaWallBecheretal.2012, author = {Meyer, Rhonda C. and Witucka-Wall, Hanna and Becher, Martina and Blacha, Anna Maria and Boudichevskaia, Anastassia and D{\"o}rmann, Peter and Fiehn, Oliver and Friedel, Svetlana and von Korff, Maria and Lisec, Jan and Melzer, Michael and Repsilber, Dirk and Schmidt, Renate and Scholz, Matthias and Selbig, Joachim and Willmitzer, Lothar and Altmann, Thomas}, title = {Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids}, series = {The plant journal}, volume = {71}, journal = {The plant journal}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/j.1365-313X.2012.05021.x}, pages = {669 -- 683}, year = {2012}, abstract = {Heterosis-associated cellular and molecular processes were analyzed in seeds and seedlings of Arabidopsis thaliana accessions Col-0 and C24 and their heterotic hybrids. Microscopic examination revealed no advantages in terms of hybrid mature embryo organ sizes or cell numbers. Increased cotyledon sizes were detectable 4 days after sowing. Growth heterosis results from elevated cell sizes and numbers, and is well established at 10 days after sowing. The relative growth rates of hybrid seedlings were most enhanced between 3 and 4 days after sowing. Global metabolite profiling and targeted fatty acid analysis revealed maternal inheritance patterns for a large proportion of metabolites in the very early stages. During developmental progression, the distribution shifts to dominant, intermediate and heterotic patterns, with most changes occurring between 4 and 6 days after sowing. The highest incidence of heterotic patterns coincides with establishment of size differences at 4 days after sowing. In contrast, overall transcript patterns at 4, 6 and 10 days after sowing are characterized by intermediate to dominant patterns, with parental transcript levels showing the largest differences. Overall, the results suggest that, during early developmental stages, intermediate gene expression and higher metabolic activity in the hybrids compared to the parents lead to better resource efficiency, and therefore enhanced performance in the hybrids.}, language = {en} } @article{KellerLenzSchmidtetal.2019, author = {Keller, Matthias and Lenz, Daniel and Schmidt, Marcel and Schwarz, Michael}, title = {Boundary representation of Dirichlet forms on discrete spaces}, series = {Journal de Math{\´e}matiques Pures et Appliqu{\´e}es}, volume = {126}, journal = {Journal de Math{\´e}matiques Pures et Appliqu{\´e}es}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-7824}, doi = {10.1016/j.matpur.2018.10.005}, pages = {109 -- 143}, year = {2019}, abstract = {We describe the set of all Dirichlet forms associated to a given infinite graph in terms of Dirichlet forms on its Royden boundary. Our approach is purely analytical and uses form methods. (C) 2018 Elsevier Masson SAS.}, language = {en} } @article{AriasFeuerbachSchmidtetal.2018, author = {Arias, Hugo R. and Feuerbach, Dominik and Schmidt, Bernd and Heydenreich, Matthias and Paz, Cristian and Ortells, Marcelo O.}, title = {Drimane Sesquiterpenoids Noncompetitively Inhibit Human alpha 4 beta 2 Nicotinic Acetylcholine Receptors with Higher Potency Compared to Human alpha 3 beta 4 and alpha 7 Subtypes}, series = {Journal of natural products}, volume = {81}, journal = {Journal of natural products}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.7b00893}, pages = {811 -- 817}, year = {2018}, abstract = {The drimane sesquiterpenoids drimenin, cinnamolide, dendocarbin A, and polygodial were purified from the Canelo tree (Drimys winteri) and chemically characterized by spectroscopic methods. The pharmacological activity of these natural compounds were determined on hα4β2, hα3β4, and hα7 nicotinic acetylcholine receptors (AChRs) by Ca2+ influx measurements. The results established that drimane sesquiterpenoids inhibit AChRs with the following selectivity: hα4β2 > hα3β4 > hα7. In the case of hα4β2 AChRs, the following potency rank order was determined (IC50's in μM): drimenin (0.97 ± 0.35) > cinnamolide (1.57 ± 0.36) > polygodial (62.5 ± 19.9) ≫ dendocarbin A (no activity). To determine putative structural features underlying the differences in inhibitory potency at hα4β2 AChRs, additional structure-activity relationship and molecular docking experiments were performed. The Ca2+ influx and structural results supported a noncompetitive mechanism of inhibition, where drimenin interacted with luminal and nonluminal (TMD-β2 intrasubunit) sites. The structure-activity relationship results, i.e., the lower the ligand polarity, the higher the inhibitory potency, supported the nonluminal interaction. Ligand binding to both sites might inhibit the hα4β2 AChR by a cooperative mechanism, as shown experimentally (nH > 1). Drimenin could be used as a molecular scaffold for the development of more potent inhibitors with higher selectivity for the hα4β2 AChR.}, language = {en} } @article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @misc{MangelsdorfHornConradBagdahnetal.2011, author = {Mangelsdorf, Birgit and Horn-Conrad, Antje and Bagdahn, Christian and Schmidt, Bernd and Eckardt, Barbara and G{\"o}rlich, Petra and Peter, Andreas and P{\"o}sl, Thomas and Nestler, Ralf and Zimmermann, Matthias}, title = {Portal = Wenn die Chemie stimmt: L{\"o}sungen f{\"u}r heute und morgen}, series = {Das Potsdamer Universit{\"a}tsmagazin}, journal = {Das Potsdamer Universit{\"a}tsmagazin}, number = {03/2011}, organization = {Universit{\"a}t Potsdam, Referat f{\"u}r Presse- und {\"O}ffentlichkeitsarbeit}, issn = {1618-6893}, doi = {10.25932/publishup-45981}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459810}, pages = {43}, year = {2011}, abstract = {Aus dem Inhalt: - Wenn die Chemie stimmt: L{\"o}sungen f{\"u}r heute und morgen - Das Kreuz mit dem Kreuz - „Das verr{\"u}ckteste Jahr unseres Lebens"}, language = {de} } @misc{MinnesRueterGlahnetal.2009, author = {Minnes, Mark and R{\"u}ter, Sebastian and Glahn, Julia and Schmieder, Carsten and Engelhardt, Kay and Helbig, Muriel and Scholz, Matthias and Polok, Darius and Latuske, J{\"o}rg and Schmidt, Anja and Stab, Uwe and Francke, Christian and B{\"o}hringer, Bianca and Kubala, Alida and Haack, Jan an}, title = {Portal alumni}, series = {Das Ehemaligen-Magazin der Universit{\"a}t Potsdam}, volume = {2009}, journal = {Das Ehemaligen-Magazin der Universit{\"a}t Potsdam}, number = {7}, organization = {Stabsstelle Studierendenmarketing/Alumniprogramm Im Auftrag der Pr{\"a}sidentin der Universit{\"a}t Potsdam}, doi = {10.25932/publishup-48242}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482420}, pages = {59}, year = {2009}, abstract = {Liebe Leserin, lieber Leser, wenn es nach der Bundesfamilienrninisterin geht, soll Deutschland eines der familienfreundlichsten L{\"a}nder in Europa werden. Noch sieht die Realit{\"a}t allerdings anders aus. Wie Ehemalige sich zwischen famili{\"a}ren und beruflichen Optionen entschieden haben, welche Probleme sie zu bew{\"a}ltigen hatten und welche L{\"o}sungen sie fanden, davon berichten sie in unserem Titelthema. Jede dritte Akademikerin bleibt heute in Deutschland kinderlos, Tendenz steigend. Abgesehen davon, dass es auch schlichtweg Lebensentw{\"u}rfe ohne Kinder gibt: Ein nicht unwesentlicher Grund dafur ist sicherlich, dass die gr{\"o}ßte Last bei der Kindererziehung immer noch Frauen tragen und sie deshalb auch die gr{\"o}ßeren Einbußen in ihrer Karriere haben. So herrscht bei vielen Arbeitgebern das Vorurteil, M{\"u}tter in F{\"u}hrungspositionen w{\"a}ren weniger leistungsfahig. Dass aber gerade eine Familie Frauen in verantwortungsvollen Positionen den R{\"u}cken st{\"a}rken und zu noch gr{\"o}ßerem Einsatz befl{\"u}geln kann, davon berichtet der einf{\"u}hrende Artikel. Ein Beispiel daf{\"u}r, dass sich Familie und eine berufliche F{\"u}hrungsposition vereinbaren lassen, ist auch Uni-Pr{\"a}sidentin, Prof. Dr.-Ing. Dr. Sabine Kunst. In einem Interview verr{\"a}t sie ihr ganz pers{\"o}nliches Erfolgsrezept und stellt außerdem die strategische Ausrichtung der Hochschule in den n{\"a}chsten Jahren vor. Wenn Sie Ihre Erfahrungen zu unserem Titelthema mit anderen Ehemaligen diskutieren wollen, k{\"o}nnen Sie dies unter .. Forum" in unserem "alumni-portal" tun. Wie immer freuen wir uns auf Ihre Meinung zur vorliegenden Ausgabe von ,,Portal alurnni" und w{\"u}nschen Ihnen viele Vergn{\"u}gen beim Lesen. Viele Gr{\"u}ße aus Potsdam, Ihr Alumni-Team.}, language = {de} } @article{SongBergstrasserRafatetal.2009, author = {Song, Hui and Bergstrasser, Claudia and Rafat, Neysan and Hoeger, Simone and Schmidt, Marc and Endres, N. and Goebeler, Matthias and Hillebrands, Jan-Luuk and Brigelius-Floh{\´e}, Regina and Banning, Antje and Beck, Grietje and Loesel, Ralf and Yard, Benito A.}, title = {The carbon monoxide releasing molecule (CORM-3) inhibits expression of vascular cell adhesion molecule-1 and E- selectin independently of haem oxygenase-1 expression}, issn = {0007-1188}, doi = {10.1111/j.1476-5381.2009.00215.x}, year = {2009}, abstract = {Background and purpose: Although carbon monoxide (CO) can modulate inflammatory processes, the influence of CO on adhesion molecules is less clear. This might be due to the limited amount of CO generated by haem degradation. We therefore tested the ability of a CO releasing molecule (CORM-3), used in supra-physiological concentrations, to modulate the expression of vascular cell adhesion molecule (VCAM)-1 and E-selectin on endothelial cells and the mechanism(s) involved. Experimental approach: Human umbilical vein endothelial cells (HUVECs) were stimulated with tumour necrosis factor (TNF)-alpha in the presence or absence of CORM-3. The influence of CORM-3 on VCAM-1 and E- selectin expression and the nuclear factor (NF)-kappa B pathway was assessed by flow cytometry, Western blotting and electrophoretic mobility shift assay. Key results: CORM-3 inhibited the expression of VCAM-1 and E-selectin on TNF-alpha- stimulated HUVEC. VCAM-1 expression was also inhibited when CORM-3 was added 24 h after TNF-alpha stimulation or when TNF-alpha was removed. This was paralleled by deactivation of NF-kappa B and a reduction in VCAM-1 mRNA. Although TNF- alpha removal was more effective in this regard, VCAM-1 protein was down-regulated more rapidly when CORM-3 was added. CORM-3 induced haem oxygenase-1 (HO-1) in a dose- and time-dependent manner, mediated by the transcription factor, Nrf2. CORM-3 was still able to down-regulate VCAM-1 expression in HUVEC transfected with siRNA for HO-1 or Nrf2. Conclusions and implications: Down-regulation of VCAM and E-selectin expression induced by CORM-3 was independent of HO-1 up- regulation and was predominantly due to inhibition of sustained NF-kappa B activation.}, language = {en} } @article{PazBecerraSilvaetal.2015, author = {Paz, Cristian and Becerra, Jose and Silva, Mario and Burgos, Viviana and Heydenreich, Matthias and Schmidt, Bernd and Thu Tran, and Vetter, Irina}, title = {(-)-Pentylsedinine, a New Alkaloid from the Leaves of Lobelia tupa with Agonist Activity at Nicotinic Acetylcholine Receptor}, series = {Natural product communications : an international journal for communications and reviews}, volume = {10}, journal = {Natural product communications : an international journal for communications and reviews}, number = {8}, publisher = {NPC}, address = {Westerville}, issn = {1934-578X}, pages = {1355 -- 1357}, year = {2015}, abstract = {Lobelia tupa, also called devil's tobacco, is a native plant from the center-south of Chile which has been used by the native people of Chile as a hallucinogenic and anesthetic plant. A new piperidine alkaloid, called pentylsedinine, which comprises five carbons in the side chain, was isolated from the aerial part of L. tupa, along with lobeline and lobelanidine. The structure was established on the basis of 1D and 2D NMR spectroscopy. While lobeline is a neutral antagonist at alpha 3 beta 2/alpha 3 beta 4 nAChR and alpha 7 nAChR, both lobelanidine and pentylsedinine act as partial agonists at nAChR}, language = {en} } @article{KellerLenzMuenchetal.2016, author = {Keller, Matthias and Lenz, Daniel and M{\"u}nch, Florentin and Schmidt, Marcel and Telcs, Andras}, title = {Note on short-time behavior of semigroups associated to self-adjoint operators}, series = {Bulletin of the London Mathematical Society}, volume = {48}, journal = {Bulletin of the London Mathematical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0024-6093}, doi = {10.1112/blms/bdw054}, pages = {935 -- 944}, year = {2016}, abstract = {We present a simple observation showing that the heat kernel on a locally finite graph behaves for short times t roughly like t(d), where d is the combinatorial distance. This is very different from the classical Varadhan-type behavior on manifolds. Moreover, this also gives that short-time behavior and global behavior of the heat kernel are governed by two different metrics whenever the degree of the graph is not uniformly bounded.}, language = {en} } @article{PazBecerraSilvaetal.2016, author = {Paz, Cristian and Becerra, Jose and Silva, Mario and Cabrera-Pardo, Jaime and Burgos, Viviana and Heydenreich, Matthias and Schmidt, Bernd}, title = {(-)-8-Oxohobartine a New Indole Alkaloid from Aristotelia chilensis (Mol.) Stuntz}, series = {Records of Natural Products}, volume = {10}, journal = {Records of Natural Products}, publisher = {ACG Publications}, address = {Gebze-Kocaeli}, issn = {1307-6167}, pages = {68 -- 73}, year = {2016}, abstract = {The fruit of Aristotelia chilensis is considered a "super fruit" due to its high concentration of polyphenols displaying exceptional antioxidant capacities ORAC. From maqui berries have been reported several anthocyanins and glycosylated flavonoids, those benefits increase the attention to restudy the plant. From the leaves of A. chilensis several indole alkaloids have been reported, we in addition to aristoteline, aristone, aristoquinoline and 3-fromylindole report the spectroscopic elucidation of 8-oxo-9-dehydromakomakine (1), hobartine (2) and a new alkaloid named 8-oxohobartine (3). Compound 1 to 3 did not show bactericidal activity against E. coli and S. aureus till 200 mu g.}, language = {en} } @inproceedings{FriessHuberSproedeetal.2019, author = {Frieß, Nina and Huber, Angela and Sproede, Alfred and Engel, Christine and Schwartz, Matthias and Brylla, Wolfgang and Kunow, R{\"u}diger and Kirjuchina, Ljuba and G{\"u}nther, Clemens and Jekutsch, Ulrike and Wehrhahn, Olena and D{\"u}ring, Michael and Smyshliaeva, Maria and Schmidt, Nora and Hansen-Kokoruš, Renate and Gladis, Lea and Soldat, Cornelia}, title = {Investigation - Rekonstruktion - Narration}, editor = {Frieß, Nina and Huber, Angela}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-446-3}, doi = {10.25932/publishup-41317}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413176}, pages = {294}, year = {2019}, abstract = {Kriminalliteratur gilt als zuverl{\"a}ssiger Seismograph f{\"u}r den inneren Zustand einer Gesellschaft, deren Umgang mit der Abweichung von der Norm zum Indikator sozialer und politischer Verh{\"a}ltnisse wird. Die gemeinsame Vergangenheit eint und trennt die Staaten Ostmittel-, Ost- und S{\"u}dosteuropas gleichermaßen. Die schicksalhaften Verwerfungen des 20. Jahrhunderts fanden nat{\"u}rlich auch Eingang in die jeweiligen Kriminalliteraturen. So vielgestaltig wie die einzelnen L{\"a}nder und Regionen sind die im vorliegenden Band untersuchten Texte. Sie erm{\"o}glichen einerseits Einblicke in den Herausbildungs- und Etablierungsprozess der Kriminalliteratur der Slavia. Andererseits bilden sie aktuelle Entwicklungen dieses ebenso popul{\"a}ren wie zeitlosen Genres ab. Das literarische Verbrechen hat Prof. Dr. Norbert P. Franz w{\"a}hrend seines aktiven akademischen Wirkens immer begleitet. Ihm zu Ehren fand im Fr{\"u}hjahr 2017 an der Universit{\"a}t Potsdam eine wissenschaftliche Tagung statt, deren Beitr{\"a}ge in diesem Band zusammengestellt sind.}, language = {de} } @article{MunzSchmidt2017, author = {Munz, Matthias and Schmidt, Christian}, title = {Estimation of vertical water fluxes from temperature time series by the inverse numerical computer program FLUX-BOT}, series = {Hydrological processes}, volume = {31}, journal = {Hydrological processes}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.11198}, pages = {2713 -- 2724}, year = {2017}, abstract = {The application of heat as a hydrological tracer has become a standard method for quantifying water fluxes between groundwater and surface water. The typical application is to estimate vertical water fluxes in the shallow subsurface beneath streams or lakes. For this purpose, time series of temperatures in the surface water and in the sediment are measured and evaluated by a vertical 1D representation of heat transport by advection and conduction. Several analytical solutions exist to calculate the vertical water flux from the measured temperatures. Although analytical solutions can be easily implemented, they are restricted to specific boundary conditions such as a sinusoidal upper temperature boundary. Numerical solutions offer higher flexibility in the selection of the boundary conditions. This, in turn, reduces the effort of data preprocessing, such as the extraction of the diurnal temperature variation from the raw data. Here, we present software to estimate water fluxes based on temperaturesFLUX-BOT. FLUX-BOT is a numerical code written in MATLAB that calculates vertical water fluxes in saturated sediments based on the inversion of measured temperature time series observed at multiple depths. FLUX-BOT applies a centred Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. FLUX-BOT includes functions for the inverse numerical routines, functions for visualizing the results, and a function for performing uncertainty analysis. We present applications of FLUX-BOT to synthetic and to real temperature data to demonstrate its performance.}, language = {en} } @misc{GuentherZimmermannKampeetal.2015, author = {G{\"u}nther, Oliver and Zimmermann, Matthias and Kampe, Heike and Scholz, Jana and Eckardt, Barbara and Schmidt, Anna Theresa and G{\"o}rlich, Petra and Lux, Nadine and Szameitat, Ulrike and Ziemer, Franziska and J{\"a}ger, Heidi and Rost, Sophia}, title = {Portal = Konzepte und Visionen: St{\"a}dte der Zukunft}, number = {01/2015}, organization = {Universit{\"a}t Potsdam, Referat f{\"u}r Presse- und {\"O}ffentlichkeitsarbeit}, issn = {1618-6893}, doi = {10.25932/publishup-44062}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440624}, pages = {42}, year = {2015}, abstract = {Aus dem Inhalt: - Konzepte und Visionen: St{\"a}dte der Zukunft - Uni plant Entwicklung bis 2018 - Was gl{\"a}nzt und was fehlt}, language = {de} } @book{SchwarzerWeissSaoumiKitteletal.2023, author = {Schwarzer, Ingo and Weiß-Saoumi, Said and Kittel, Roland and Friedrich, Tobias and Kaynak, Koraltan and Durak, Cemil and Isbarn, Andreas and Diestel, J{\"o}rg and Knittel, Jens and Franz, Marquart and Morra, Carlos and Stahnke, Susanne and Braband, Jens and Dittmann, Johannes and Griebel, Stephan and Krampf, Andreas and Link, Martin and M{\"u}ller, Matthias and Radestock, Jens and Strub, Leo and Bleeke, Kai and Jehl, Leander and Kapitza, R{\"u}diger and Messadi, Ines and Schmidt, Stefan and Schwarz-R{\"u}sch, Signe and Pirl, Lukas and Schmid, Robert and Friedenberger, Dirk and Beilharz, Jossekin Jakob and Boockmeyer, Arne and Polze, Andreas and R{\"o}hrig, Ralf and Sch{\"a}be, Hendrik and Thiermann, Ricky}, title = {RailChain}, number = {152}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-550-7}, issn = {1613-5652}, doi = {10.25932/publishup-57740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577409}, publisher = {Universit{\"a}t Potsdam}, pages = {140}, year = {2023}, abstract = {The RailChain project designed, implemented, and experimentally evaluated a juridical recorder that is based on a distributed consensus protocol. That juridical blockchain recorder has been realized as distributed ledger on board the advanced TrainLab (ICE-TD 605 017) of Deutsche Bahn. For the project, a consortium consisting of DB Systel, Siemens, Siemens Mobility, the Hasso Plattner Institute for Digital Engineering, Technische Universit{\"a}t Braunschweig, T{\"U}V Rheinland InterTraffic, and Spherity has been formed. These partners not only concentrated competencies in railway operation, computer science, regulation, and approval, but also combined experiences from industry, research from academia, and enthusiasm from startups. Distributed ledger technologies (DLTs) define distributed databases and express a digital protocol for transactions between business partners without the need for a trusted intermediary. The implementation of a blockchain with real-time requirements for the local network of a railway system (e.g., interlocking or train) allows to log data in the distributed system verifiably in real-time. For this, railway-specific assumptions can be leveraged to make modifications to standard blockchains protocols. EULYNX and OCORA (Open CCS On-board Reference Architecture) are parts of a future European reference architecture for control command and signalling (CCS, Reference CCS Architecture - RCA). Both architectural concepts outline heterogeneous IT systems with components from multiple manufacturers. Such systems introduce novel challenges for the approved and safety-relevant CCS of railways which were considered neither for road-side nor for on-board systems so far. Logging implementations, such as the common juridical recorder on vehicles, can no longer be realized as a central component of a single manufacturer. All centralized approaches are in question. The research project RailChain is funded by the mFUND program and gives practical evidence that distributed consensus protocols are a proper means to immutably (for legal purposes) store state information of many system components from multiple manufacturers. The results of RailChain have been published, prototypically implemented, and experimentally evaluated in large-scale field tests on the advanced TrainLab. At the same time, the project showed how RailChain can be integrated into the road-side and on-board architecture given by OCORA and EULYNX. Logged data can now be analysed sooner and also their trustworthiness is being increased. This enables, e.g., auditable predictive maintenance, because it is ensured that data is authentic and unmodified at any point in time.}, language = {en} } @book{AlnemrPolyvyanyyAbuJarouretal.2010, author = {Alnemr, Rehab and Polyvyanyy, Artem and AbuJarour, Mohammed and Appeltauer, Malte and Hildebrandt, Dieter and Thomas, Ivonne and Overdick, Hagen and Sch{\"o}bel, Michael and Uflacker, Matthias and Kluth, Stephan and Menzel, Michael and Schmidt, Alexander and Hagedorn, Benjamin and Pascalau, Emilian and Perscheid, Michael and Vogel, Thomas and Hentschel, Uwe and Feinbube, Frank and Kowark, Thomas and Tr{\"u}mper, Jonas and Vogel, Tobias and Becker, Basil}, title = {Proceedings of the 4th Ph.D. Retreat of the HPI Research School on Service-oriented Systems Engineering}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-036-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-40838}, publisher = {Universit{\"a}t Potsdam}, pages = {Getr. Z{\"a}hlung}, year = {2010}, language = {en} } @article{WisotzkiBaconBrinchmannetal.2018, author = {Wisotzki, Lutz and Bacon, R. and Brinchmann, J. and Cantalupo, S. and Richter, Philipp and Schaye, J. and Schmidt, Kasper Borello and Urrutia, Tanya and Weilbacher, Peter Michael and Akhlaghi, M. and Bouche, N. and Contini, T. and Guiderdoni, B. and Herenz, E. C. and Inami, H. and Kerutt, Josephine Victoria and Leclercq, F. and Marino, R. A. and Maseda, M. and Monreal-Ibero, A. and Nanayakkara, T. and Richard, J. and Saust, R. and Steinmetz, Matthias and Wendt, Martin}, title = {Nearly all the sky is covered by Lyman-alpha emission around high-redshift galaxies}, series = {Nature : the international weekly journal of science}, volume = {562}, journal = {Nature : the international weekly journal of science}, number = {7726}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-018-0564-6}, pages = {229 -- 232}, year = {2018}, abstract = {Galaxies are surrounded by large reservoirs of gas, mostly hydrogen, that are fed by inflows from the intergalactic medium and by outflows from galactic winds. Absorption-line measurements along the lines of sight to bright and rare background quasars indicate that this circumgalactic medium extends far beyond the starlight seen in galaxies, but very little is known about its spatial distribution. The Lyman-alpha transition of atomic hydrogen at a wavelength of 121.6 nanometres is an important tracer of warm (about 104 kelvin) gas in and around galaxies, especially at cosmological redshifts greater than about 1.6 at which the spectral line becomes observable from the ground. Tracing cosmic hydrogen through its Lyman-a emission has been a long-standing goal of observational astrophysics(1-3), but the extremely low surface brightness of the spatially extended emission is a formidable obstacle. A new window into circumgalactic environments was recently opened by the discovery of ubiquitous extended Lyman-alpha emission from hydrogen around high-redshift galaxies(4,5). Such measurements were previously limited to especially favourable systems(6-8) or to the use of massive statistical averaging(9,10) because of the faintness of this emission. Here we report observations of low-surface-brightness Lyman-alpha emission surrounding faint galaxies at redshifts between 3 and 6. We find that the projected sky coverage approaches 100 per cent. The corresponding rate of incidence (the mean number of Lyman-alpha emitters penetrated by any arbitrary line of sight) is well above unity and similar to the incidence rate of high-column-density absorbers frequently detected in the spectra of distant quasars(11-14). This similarity suggests that most circumgalactic atomic hydrogen at these redshifts has now been detected in emission.}, language = {en} } @misc{HornConradSeipLiebigetal.2023, author = {Horn-Conrad, Antje and Seip, Juliane and Liebig, Ferenc and Engel, Silke and Schuster, Stefanie and Jung, Karina and Aust, Sarah-Madeleine and Kampe, Heike and Lentz, Christine and Mikulla, Stefanie and Zimmermann, Matthias and Agrofylax, Luisa and Scholz, Jana and Schmidt, Debby}, title = {Portal Transfer}, number = {2023}, issn = {2747-6898}, doi = {10.25932/publishup-61365}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613650}, pages = {78}, year = {2023}, abstract = {Liebe Leserinnen und Leser, kein Nachrichtentag vergeht, an dem nicht die Expertise aus der Wissenschaft gefragt ist: Ob zum russischen Angriffskrieg in der Ukraine, zur UNKlimakonferenz in {\"A}gypten, zur Flutkatastrophe in Pakistan, zum D{\"u}rresommer, zur Energiekrise, selbst zur umstrittenen Fußballweltmeisterschaft in Katar standen und stehen Expertinnen und Experten in den Medien Rede und Antwort. Auch aus der Universit{\"a}t Potsdam. Wir haben sie gefragt, wie sie damit umgehen, wie es ihnen gelingt, aus der laufenden Forschung heraus aktuelle Probleme zu bewerten. Und was davon bleibt, wenn das {\"o}ffentliche Interesse abebbt. F{\"u}r die Potsdamer Politik- und Verwaltungswissenschaftlerin Sabine Kuhlmann besteht die Kunst darin, „außerhalb der Krise Ideen und L{\"o}sungsans{\"a}tze zu verstetigen und sie tats{\"a}chlich in die Praxis umzusetzen". In unserem Alumni- und Transfermagazin berichten wir davon, was und wie die Universit{\"a}t Potsdam dazu beitr{\"a}gt. Wir erz{\"a}hlen, wie Erfindungen zu Innovationen in der Wirtschaft werden und sich Start-ups auf den Weg machen, ihr Produkt selbst zu vermarkten. Das Spektrum reicht von Meeresfr{\"u}chten auf Pflanzenbasis bis zu einer App, mit der sich Fr{\"u}hformen der Demenz erkennen lassen. Neben neuen Technologien kommt es aber vor allem darauf an, das an der Universit{\"a}t erzeugte Wissen in die Praxis zu transferieren. Deshalb stellen wir ein Programm zur Bek{\"a}mpfung von Hassrede in der Schule vor oder auch eine Klettertherapie zur Behandlung von Skoliose. Und wir zeigen, wie eine Studie zur sportlichen Leistungskraft von Kindern helfen kann, den Sportunterricht zu verbessern. Den gr{\"o}ßten Teil des an der Universit{\"a}t produzierten Wissens tragen die Studierenden in die Welt, wenn sie nach ihrem Abschluss als Musiklehrerin in einer Schule arbeiten oder als Software-Ingenieur im eigenen Unternehmen, als Geologin nach Seltenen Erden sch{\"u}rfen, als {\"O}kologe ausgelaugte B{\"o}den wieder fruchtbar machen oder als Politikerin ein Ministerium leiten. Sie alle kommen in diesem Magazin zu Wort. Oder in unserem neuen Podcast „Listen.UP", in dem Studierende, Forschende und Alumni von ihren Transferprojekten erz{\"a}hlen. Von der Gr{\"u}nderin Ulrike B{\"o}ttcher erf{\"a}hrt man dort zum Beispiel, wie sie mit Schnallen, {\"O}sen und Kn{\"o}pfen aus Bio- Materialien die Modeindustrie in diesem Bereich nachhaltig ver{\"a}ndern will. Nachzulesen ist das auch in diesem Heft. Immer dort, wo das „Listen. UP"-Logo erscheint, lohnt es, zus{\"a}tzlich in den Podcast hineinzuh{\"o}ren.}, language = {de} } @inproceedings{PatuchovaKleinFranzkeetal.2014, author = {Patuchova, Nadezda B. and Klein, Eckart and Franzke, Jochen and B{\"u}chner, Christiane and Doroshenko, Egor N. and Hoof, Karsten and Zenin, Sergey S. and Thiele, Carmen and Schmidt, Carmen and Fadeev, Vladimir Ivanovič and Dombert, Matthias and Sadovnikova, Galina D. and Schulze, Carola and Luchterhandt, Otto and Syuzyukina, Oxana}, title = {Verfassungsentwicklung in Russland und Deutschland : Materialien des russisch-deutschen Symposiums anl{\"a}sslich des 20. Jahrestages der Verfassung der Russischen F{\"o}deration am 25. und 26. September 2013 an der Universit{\"a}t Potsdam}, editor = {Fadeev, Vladimir Ivanovič and Schulze, Carola}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-289-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70418}, pages = {XI, 149}, year = {2014}, abstract = {Der Band enth{\"a}lt die Tagungsmaterialien des deutsch-russichen Symposiums zum Thema "Verfassungsentwicklung in Russland und Deutschland", welches am 25. und 26. September 2013 in Potsdam stattfand. Die Tagung wurde anl{\"a}sslich des 20. Jahrestages der russischen Verfassung vom Dezember 2013 durchgef{\"u}hrt. Die inhaltlichen Schwerpunkte bilden die Themen: Verfassungsentstehung, Verfassungs{\"a}nderung, Verfassungsprinzipien, Landesverfassungen, Fortentwicklung der Verfassung durch die Verfassungsgerichtsbarkeit und Grundrechte, die jeweils aus russischer und deutscher Sicht behandelt werden. Erg{\"a}nzend befasst sich jeweils ein Betrag mit aktuellen Problemen der Menschenrechtsverwirklichung in Russland und der Ausl{\"a}nderintegration in Deutschland und Russland im Vergleich.}, language = {de} } @book{OlsenStiebelsBierwischetal.2019, author = {Olsen, Susan and Stiebels, Barbara and Bierwisch, Manfred and Zimmermann, Ilse and Cavar, Damir and Georgi, Doreen and Bacskai-Atkari, Julia and Alexiadou, Artemis and Błaszczak, Joanna and M{\"u}ller, Gereon and Šim{\´i}k, Radek and Meinunger, Andr{\´e} and Thiersch, Craig and Arnhold, Anja and F{\´e}ry, Caroline and Bayer, Josef and Titov, Elena and Fominyam, Henry and Tran, Thuan and Bornkessel-Schlesewsky, Ina D. and Schlesewsky, Matthias and Zimmermann, Malte and H{\"a}ussler, Jana and Mucha, Anne and Schmidt, Andreas and Weskott, Thomas and Wierzba, Marta and Stede, Manfred and Skopeteas, Stavros and Gafos, Adamantios I. and Haider, Hubert and Wunderlich, Dieter and Staudacher, Peter and Rauh, Gisa}, title = {Of Trees and Birds}, editor = {Brown, Jessica M. M. and Schmidt, Andreas and Wierzba, Marta}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-457-9}, doi = {10.25932/publishup-42654}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426542}, publisher = {Universit{\"a}t Potsdam}, pages = {xvi, 435}, year = {2019}, abstract = {Gisbert Fanselow's work has been invaluable and inspiring to many ­researchers working on syntax, morphology, and information ­structure, both from a ­theoretical and from an experimental perspective. This ­volume comprises a collection of articles dedicated to Gisbert on the occasion of his 60th birthday, covering a range of topics from these areas and beyond. The contributions have in ­common that in a broad sense they have to do with language structures (and thus trees), and that in a more specific sense they have to do with birds. They thus cover two of Gisbert's major interests in- and outside of the linguistic world (and ­perhaps even at the interface).}, language = {en} } @article{MunzOswaldSchmidt2011, author = {Munz, Matthias and Oswald, Sascha and Schmidt, C.}, title = {Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation}, series = {Hydrology and earth system sciences : HESS}, volume = {15}, journal = {Hydrology and earth system sciences : HESS}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-15-3495-2011}, pages = {3495 -- 3510}, year = {2011}, abstract = {Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of +/- 1.3 md(-1). Pass band filtering provided amplitude differences and phase shifts of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to temperature sensor spacing, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small sensor distances of all setups were found to be insensitive to vertical water flux.}, language = {en} } @article{OloyaNamukobeHeydenreichetal.2021, author = {Oloya, Benson and Namukobe, Jane and Heydenreich, Matthias and Ssengooba, Willy and Schmidt, Bernd and Byamukama, Robert}, title = {Antimycobacterial activity of the extract and isolated compounds from the stem bark of Zanthoxylum leprieurii Guill. and Perr.}, series = {Natural product communications : an international journal for communications and reviews}, volume = {16}, journal = {Natural product communications : an international journal for communications and reviews}, number = {8}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {1934-578X}, doi = {10.1177/1934578X211035851}, pages = {8}, year = {2021}, abstract = {Zanthoxylum leprieurii Guill. and Perr. (Rutaceae) stem bark is used locally in Uganda for treating tuberculosis (TB) and cough-related infections. Lupeol (1), sesamin (2), trans-fagaramide (3), arnottianamide (4), (S)-marmesinin (5), and hesperidin (6) were isolated from the chloroform/methanol (1:1) extract of Z. leprieurii stem bark. Their structures were elucidated using spectroscopic techniques and by comparison with literature data. Furthermore, the extract and isolated compounds were subjected to antimycobacterial activity. The extract exhibited moderate activity against the susceptible (H(37)Rv) TB strain, but weak activity against the multidrug resistant (MDR)-TB strain with minimum inhibitory concentrations (MICs) of 586.0 and 1172.0 mu g/mL, respectively. Compound 3 (trans-fagaramide) showed significant antimycobacterial activity against the susceptible (H(37)Rv) TB strain (MIC 6 mu g/mL), but moderate activity against the MDR-TB strain (MIC 12.2 mu g/mL). Compounds 2, 5, 6, and 1 showed moderate activities against the susceptible (H(37)Rv) strain (MIC 12.2-98.0 mu g/mL) and moderate to weak activities against the MDR-TB strain (MIC 24.4-195.0 mu g/mL). This study reports for the first time the isolation of compounds 1 to 6 from the stem bark of Z leprieurii. trans-Fagaramide (3) may present a vital template in pursuit of novel and highly effective TB drugs.}, language = {en} } @article{RothwellMurphyAleksandrovaetal.2020, author = {Rothwell, Joseph A. and Murphy, Neil and Aleksandrova, Krasimira and Schulze, Matthias Bernd and Bešević, Jelena and Kliemann, Nathalie and Jenab, Mazda and Ferrari, Pietro and Achaintre, David and Gicquiau, Audrey and Vozar, B{\´e}atrice and Scalbert, Augustin and Huybrechts, Inge and Freisling, Heinz and Prehn, Cornelia and Adamski, Jerzy and Cross, Amanda J. and Pala, Valeria Maria and Boutron-Ruault, Marie-Christine and Dahm, Christina C. and Overvad, Kim and Gram, Inger Torhild and Sandanger, Torkjel M. and Skeie, Guri and Jakszyn, Paula and Tsilidis, Kostas K. and Hughes, David J. and van Guelpen, Bethany and Bod{\´e}n, Stina and S{\´a}nchez, Maria-Jos{\´e} and Schmidt, Julie A. and Katzke, Verena and K{\"u}hn, Tilman and Colorado-Yohar, Sandra and Tumino, Rosario and Bueno-de-Mesquita, Bas and Vineis, Paolo and Masala, Giovanna and Panico, Salvatore and Eriksen, Anne Kirstine and Tj{\o}nneland, Anne and Aune, Dagfinn and Weiderpass, Elisabete and Severi, Gianluca and Chaj{\`e}s, V{\´e}ronique and Gunter, Marc J.}, title = {Metabolic signatures of healthy lifestyle patterns and colorectal cancer risk in a European cohort}, series = {Clinical gastroenterology and hepatology}, volume = {20}, journal = {Clinical gastroenterology and hepatology}, publisher = {Elsevier}, address = {New York, NY}, issn = {1542-3565}, doi = {10.1016/j.cgh.2020.11.045}, pages = {E1061 -- E1082}, year = {2020}, abstract = {BACKGROUND \& AIMS: Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS: Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1-5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5738 cancer-free European Prospective Investigation into Cancer and Nutrition participants with metabolomics data. Partial least-squares regression was used to derive fatty acid and endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95\% CIs were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression. RESULTS: Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely associated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95\% CI, 0.29-0.90; endogenous metabolites: OR, 0.62 per unit change; 95\% CI, 0.50-0.78) than the WCRF/AICR score (OR, 0.93 per unit change; 95\% CI, 0.86-1.00) overall. Signature associations were stronger in male compared with female participants. CONCLUSIONS: Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of a healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer.}, language = {en} } @article{MunzOswaldSchmidt2017, author = {Munz, Matthias and Oswald, Sascha and Schmidt, Christian}, title = {Coupled Long-Term Simulation of Reach-Scale Water and Heat Fluxes Across the River-Groundwater Interface for Retrieving Hyporheic Residence Times and Temperature Dynamics}, series = {Water resources research}, volume = {53}, journal = {Water resources research}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2017WR020667}, pages = {8900 -- 8924}, year = {2017}, abstract = {Flow patterns in conjunction with seasonal and diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many temperature-sensitive microbial processes. In this study, we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high-resolution observations of hydraulic heads and temperatures to quantify reach-scale water and heat flux across the river-groundwater interface and hyporheic temperature dynamics of a lowland gravel bed river. The model was calibrated in order to constrain estimates of the most sensitive model parameters. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7 degrees C and an average Nash Sutcliffe efficiency of 0.87. Our results indicate that nonsubmerged streambed structures such as gravel bars cause substantial thermal heterogeneity within the saturated sediment at the reach scale. Individual hyporheic flow path temperatures strongly depend on the flow path residence time, flow path depth, river, and groundwater temperature. Variations in individual hyporheic flow path temperatures were up to 7.9 degrees C, significantly higher than the daily average (2.8 degrees C), but still lower than the average seasonal hyporheic temperature difference (19.2 degrees C). The distribution between flow path temperatures and residence times follows a power law relationship with exponent of about 0.37. Based on this empirical relation, we further estimated the influence of hyporheic flow path residence time and temperature on oxygen consumption which was found to partly increase by up to 29\% in simulations.}, language = {en} } @article{MunzOswaldSchmidt2016, author = {Munz, Matthias and Oswald, Sascha and Schmidt, Christian}, title = {Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures}, series = {Journal of hydrology}, volume = {539}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2016.05.012}, pages = {74 -- 87}, year = {2016}, abstract = {The analytical evaluation of diurnal temperature variation in riverbed sediments provides detailed information on exchange fluxes between rivers and groundwater. The underlying assumption of the stationary, one-dimensional vertical flow field is frequently violated in natural systems where subsurface water flow often has a significant horizontal component. In this paper, we present a new methodology for identifying the geometry of the subsurface flow field using vertical temperature profiles. The statistical analyses are based on model optimisation and selection and are used to evaluate the shape of vertical amplitude ratio profiles. The method was applied to multiple profiles measured around in-stream geomorphological structures in a losing reach of a gravel bed river. The predominant subsurface flow field was systematically categorised in purely vertical and horizontal (hyporheic, parafluvial) components. The results highlight that river groundwater exchange flux at the head, crest and tail of geomorphological structures significantly deviated from the one-dimensional vertical flow, due to a significant horizontal component. The geometry of the subsurface water flow depended on the position around the geomorphological structures and on the river level. The methodology presented in this paper features great potential for characterising the spatial patterns and temporal dynamics of complex subsurface flow geometries by using measured temperature time series in vertical profiles. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @book{RanaMohapatraSidorovaetal.2022, author = {Rana, Kaushik and Mohapatra, Durga Prasad and Sidorova, Julia and Lundberg, Lars and Sk{\"o}ld, Lars and Lopes Grim, Lu{\´i}s Fernando and Sampaio Gradvohl, Andr{\´e} Leon and Cremerius, Jonas and Siegert, Simon and Weltzien, Anton von and Baldi, Annika and Klessascheck, Finn and Kalancha, Svitlana and Lichtenstein, Tom and Shaabani, Nuhad and Meinel, Christoph and Friedrich, Tobias and Lenzner, Pascal and Schumann, David and Wiese, Ingmar and Sarna, Nicole and Wiese, Lena and Tashkandi, Araek Sami and van der Walt, Est{\´e}e and Eloff, Jan H. P. and Schmidt, Christopher and H{\"u}gle, Johannes and Horschig, Siegfried and Uflacker, Matthias and Najafi, Pejman and Sapegin, Andrey and Cheng, Feng and Stojanovic, Dragan and Stojnev Ilić, Aleksandra and Djordjevic, Igor and Stojanovic, Natalija and Predic, Bratislav and Gonz{\´a}lez-Jim{\´e}nez, Mario and de Lara, Juan and Mischkewitz, Sven and Kainz, Bernhard and van Hoorn, Andr{\´e} and Ferme, Vincenzo and Schulz, Henning and Knigge, Marlene and Hecht, Sonja and Prifti, Loina and Krcmar, Helmut and Fabian, Benjamin and Ermakova, Tatiana and Kelkel, Stefan and Baumann, Annika and Morgenstern, Laura and Plauth, Max and Eberhard, Felix and Wolff, Felix and Polze, Andreas and Cech, Tim and Danz, Noel and Noack, Nele Sina and Pirl, Lukas and Beilharz, Jossekin Jakob and De Oliveira, Roberto C. L. and Soares, F{\´a}bio Mendes and Juiz, Carlos and Bermejo, Belen and M{\"u}hle, Alexander and Gr{\"u}ner, Andreas and Saxena, Vageesh and Gayvoronskaya, Tatiana and Weyand, Christopher and Krause, Mirko and Frank, Markus and Bischoff, Sebastian and Behrens, Freya and R{\"u}ckin, Julius and Ziegler, Adrian and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Sz{\´a}rnyas, G{\´a}bor and Marton, J{\´o}zsef and Maginecz, J{\´a}nos and Varr{\´o}, D{\´a}niel and Antal, J{\´a}nos Benjamin}, title = {HPI Future SOC Lab - Proceedings 2018}, number = {151}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-547-7}, issn = {1613-5652}, doi = {10.25932/publishup-56371}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563712}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 277}, year = {2022}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2018. Selected projects have presented their results on April 17th and November 14th 2017 at the Future SOC Lab Day events.}, language = {en} } @article{KammKammSchmidtetal.2006, author = {Kamm, Birgit and Kamm, Michael and Schmidt, Matthias and Starke, Ines and Kleinpeter, Erich}, title = {Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis) : quantification of glucose}, issn = {0045-6535}, doi = {10.1016/j.chemosphere.2005.03.073}, year = {2006}, abstract = {Different chemical and enzymatic methods were applied for the hydrolysis of main stems from Lupinus nootkatensis (harvest November 2002). The whole process (all steps) is based on the lignocellulose-feedstock biorefinery regime. The acid hydrolysis of L. was performed with concentrated hydrochloric acid; advantages in this process are exothermic hydrolysis and the possibility of acid recovery. Enzymatic hydrolysis achieved high yields of fermentable carbohydrates (regarding to input cellulose) with high selectivity. However, this way requires the generation of cellulose from L. by chemical pulping. Monosaccharide derivatives thus obtained were identified by their GC retention times and the corresponding MS fragmentation. Hexamethyldisilazane was used as derivatization reagent to prepare the trimethylsilyl derivatives of the carbohydrates and of the degradations products of cellulose from the different fractions. The glucose content was quantified by GC peak integration with respect to an internal standard.}, language = {en} } @book{KubanRottaNolteetal.2023, author = {Kuban, Robert and Rotta, Randolf and Nolte, J{\"o}rg and Chromik, Jonas and Beilharz, Jossekin Jakob and Pirl, Lukas and Friedrich, Tobias and Lenzner, Pascal and Weyand, Christopher and Juiz, Carlos and Bermejo, Belen and Sauer, Joao and Coelh, Leandro dos Santos and Najafi, Pejman and P{\"u}nter, Wenzel and Cheng, Feng and Meinel, Christoph and Sidorova, Julia and Lundberg, Lars and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Elsaid, Mohamed Esameldin Mohamed and Abbas, Hazem M. and Rula, Anisa and Sejdiu, Gezim and Maurino, Andrea and Schmidt, Christopher and H{\"u}gle, Johannes and Uflacker, Matthias and Nozza, Debora and Messina, Enza and Hoorn, Andr{\´e} van and Frank, Markus and Schulz, Henning and Alhosseini Almodarresi Yasin, Seyed Ali and Nowicki, Marek and Muite, Benson K. and Boysan, Mehmet Can and Bianchi, Federico and Cremaschi, Marco and Moussa, Rim and Abdel-Karim, Benjamin M. and Pfeuffer, Nicolas and Hinz, Oliver and Plauth, Max and Polze, Andreas and Huo, Da and Melo, Gerard de and Mendes Soares, F{\´a}bio and Oliveira, Roberto C{\´e}lio Lim{\~a}o de and Benson, Lawrence and Paul, Fabian and Werling, Christian and Windheuser, Fabian and Stojanovic, Dragan and Djordjevic, Igor and Stojanovic, Natalija and Stojnev Ilic, Aleksandra and Weidmann, Vera and Lowitzki, Leon and Wagner, Markus and Ifa, Abdessatar Ben and Arlos, Patrik and Megia, Ana and Vendrell, Joan and Pfitzner, Bjarne and Redondo, Alberto and R{\´i}os Insua, David and Albert, Justin Amadeus and Zhou, Lin and Arnrich, Bert and Szab{\´o}, Ildik{\´o} and Fodor, Szabina and Ternai, Katalin and Bhowmik, Rajarshi and Campero Durand, Gabriel and Shevchenko, Pavlo and Malysheva, Milena and Prymak, Ivan and Saake, Gunter}, title = {HPI Future SOC Lab - Proceedings 2019}, number = {158}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-564-4}, issn = {1613-5652}, doi = {10.25932/publishup-59791}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597915}, publisher = {Universit{\"a}t Potsdam}, pages = {xi, 301}, year = {2023}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2019. Selected projects have presented their results on April 9th and November 12th 2019 at the Future SOC Lab Day events.}, language = {en} } @misc{SchroenKoehliScheiffeleetal.2017, author = {Schr{\"o}n, Martin and K{\"o}hli, Markus and Scheiffele, Lena and Iwema, Joost and Bogena, Heye R. and Lv, Ling and Martini, Edoardo and Baroni, Gabriele and Rosolem, Rafael and Weimar, Jannis and Mai, Juliane and Cuntz, Matthias and Rebmann, Corinna and Oswald, Sascha and Dietrich, Peter and Schmidt, Ulrich and Zacharias, Steffen}, title = {Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {636}, doi = {10.25932/publishup-41913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419134}, pages = {5009 -- 5030}, year = {2017}, abstract = {In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.}, language = {en} } @article{SchroenKoehliScheiffeleetal.2017, author = {Schr{\"o}n, Martin and K{\"o}hli, Markus and Scheiffele, Lena and Iwema, Joost and Bogena, Heye R. and Lv, Ling and Martini, Edoardo and Baroni, Gabriele and Rosolem, Rafael and Weimar, Jannis and Mai, Juliane and Cuntz, Matthias and Rebmann, Corinna and Oswald, Sascha and Dietrich, Peter and Schmidt, Ulrich and Zacharias, Steffen}, title = {Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity}, series = {Hydrology and earth system sciences : HESS}, volume = {21}, journal = {Hydrology and earth system sciences : HESS}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-21-5009-2017}, pages = {5009 -- 5030}, year = {2017}, abstract = {In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.}, language = {en} }