@misc{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {19}, doi = {10.25932/publishup-56537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565379}, pages = {14}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {99}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {4}, publisher = {Elsevier}, address = {New York}, organization = {Lifelines Cohort Study
Regeneron Genetics Ctr}, issn = {0085-2538}, doi = {10.1016/j.kint.2020.09.030}, pages = {926 -- 939}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{SchultzeSchmidt2019, author = {Schultze, Christiane and Schmidt, Bernd}, title = {Functionalized Benzofurans via Microwave-Promoted Tandem Claisen-Rearrangement/5-endo-dig Cyclization}, series = {Journal of heterocyclic chemistry}, volume = {56}, journal = {Journal of heterocyclic chemistry}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-152X}, doi = {10.1002/jhet.3671}, pages = {2619 -- 2629}, year = {2019}, abstract = {Ortho-allyloxy alkinyl benzenes undergo, upon microwave irradiation in dimethylformamide, a tandem sequence of Claisen-rearrangement and 5-endo-dig cyclization to furnish 7-allyl-substituted benzofurans. With terminal alkynes, chroman-4-ones and enaminoketones become the main products. A mechanistic proposal for this observation relies on a reaction of the starting material with the solvent dimethylformamide under the microwave conditions.}, language = {en} } @article{SchmidtNave2006, author = {Schmidt, Bernd and Nave, Stefan}, title = {Stereoselective syntheses of enantiomerically pure 2,5-disubstituted dihydropyrans based on olefin metathesis}, series = {The journal of organic chemistry}, volume = {71}, journal = {The journal of organic chemistry}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo061190k}, pages = {7364 -- 7369}, year = {2006}, abstract = {A short synthesis of 2,5-disubstituted dihydropyrans starting from D-mannitol as a chiral building block is described. Our synthetic approach combines ruthenium-catalyzed ring closing olefin metathesis and palladium-catalyzed nucleophilic substitution.}, language = {en} } @article{PazHeydenreichSchmidtetal.2018, author = {Paz, Cristian and Heydenreich, Matthias and Schmidt, Bernd and Vadra, Nahir and Baggio, Ricardo}, title = {Three new dihydro-beta-agarofuran sesquiterpenes from the seeds of Maytenus boaria}, series = {Acta Crystallographica Section C}, volume = {74}, journal = {Acta Crystallographica Section C}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2053-2296}, doi = {10.1107/S2053229618005429}, pages = {564 -- 570}, year = {2018}, abstract = {As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new beta-agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9-dihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b] oxepine-5,10-diylbis(furan-3-carboxylate), C27H32O11, (II), (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a, 9-tetramethyloctahydro-2H-3,9a-methanobenzo[ b] oxepine-5,10-diyl bis(furan-3-carboxylate), C27H32O10, (III), and (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-10-(benzoyloxy)-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepin-5-yl furan-3-carboxylate, C29H34O9, (IV), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C73, 451-457]. In the (isomorphic) structures of (II) and (III), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in (II) and no substituent in (III). This position is also unsubstituted in (IV), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S, 4S, 5S, 6R, 7R, 8R, 9R, 10S in (II) and 1S, 4S, 5S, 6R, 7R, 9S, 10S in (III) and (IV), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in (II) and H in (III) and (IV). This diversity in substitution, in turn, is responsible for the differences in the hydrogen-bonding schemes, which is discussed.}, language = {en} } @article{SchmidtSchultze2018, author = {Schmidt, Bernd and Schultze, Christiane}, title = {A one-pot synthesis of pyranocoumarins through microwave-promoted propargyl claisen rearrangement/wittig olefination}, series = {European journal of organic chemistry}, volume = {2018}, journal = {European journal of organic chemistry}, number = {2}, publisher = {Wiley-VCH Verl.}, address = {Weinheim}, issn = {1434-193X}, pages = {223 -- 227}, year = {2018}, abstract = {The reaction between propargyl ethers of hydroxybenzaldehydes and the ylide ethyl (triphenylphosphoranylidene)acetate was carried out under microwave irradiation to regioselectively afford angular pyranocoumarins. The chromene and coumarin heterocyclic scaffolds were simultaneously formed in the same synthetic step without changing the reaction conditions. The natural products seselin, braylin, and dipetalolactone were among the products synthesized by this method.}, language = {en} } @article{SchmidtPetersenBraun2018, author = {Schmidt, Bernd and Petersen, Monib H. and Braun, Diana}, title = {Bidirectional Synthesis of 6-Acetoxy-5-hexadecanolide, the Mosquito Oviposition Pheromone of Culex quinquefasciatus, from a C-2-Symmetric Building Block Using Olefin Metathesis Reactions}, series = {The journal of organic chemistry}, volume = {83}, journal = {The journal of organic chemistry}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.7b02944}, pages = {1627 -- 1633}, year = {2018}, abstract = {(5R,6S)-6-Acetoxy-5-hexadecanolide (MOP) is the oviposition pheromone of the mosquito Cx. quinquefasciatus, a vector of pathogens causing a variety of tropical diseases. We describe and evaluate herein three syntheses of MOP starting from mannitol-derived (3R,4R)-hexa-1,5-diene-3,4-diol. This C-2-symmetric building block is elaborated through bidirectional olefin metathesis reactions into 6-epi-MOP, which was converted into MOP via Mitsunobu inversion. The shortest of the three routes makes use of two sequential cross-metathesis reactions and an assisted tandem catalytic olefin reduction, induced by an in situ conversion of a Ru-carbene to a Ru-hydride.}, language = {en} } @article{SandSchmidt2021, author = {Sand, Patrick and Schmidt, Bernd}, title = {Pd-catalyzed oxidative sulfoalkenylation of acetanilides and traceless removal of the catalyst directing group}, series = {ChemistrySelect}, volume = {6}, journal = {ChemistrySelect}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202101009}, pages = {3563 -- 3567}, year = {2021}, abstract = {The palladium-catalyzed oxidative Heck-reaction, also referred to as Fujiwara-Moritani-reaction, has been investigated for the synthesis of styrenylsulfonyl compounds. Acetanilides and vinylsulfonyl compounds undergo dehydrogenative coupling reactions in moderate to quantitative yields, using benzoquinone as the oxidant of choice. Potassium peroxodisulfate, which had previously been identified as a superior oxidant for the coupling with acrylates, did not provide any coupling products with these olefins. Traceless removal of the catalyst directing group through a deacetylation-diazotation-coupling (DDC) sequence was demonstrated for 2-arylethene sulfones.}, language = {en} } @article{LoodSchmidt2020, author = {Lood, Kajsa and Schmidt, Bernd}, title = {Stereoselective synthesis of conjugated polyenes based on tethered olefin metathesis and carbonyl olefination}, series = {The journal of organic chemistry}, volume = {85}, journal = {The journal of organic chemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.0c00446}, pages = {5122 -- 5130}, year = {2020}, abstract = {The combination of a highly stereoselective tethered olefin metathesis reaction and a Julia-Kocienski olefination is presented as a strategy for the synthesis of conjugated polyenes with at least one Z-configured C=C bond. The strategy is exemplified by the synthesis of the marine natural product (+)-bretonin B.}, language = {en} } @article{SchultzeFossSchmidt2020, author = {Schultze, Christiane and Foß, Stefan and Schmidt, Bernd}, title = {8-Prenylflavanones through microwave promoted tandem claisen rearrangement/6-endo-trig cyclization and cross metathesis}, series = {European journal of organic chemistry}, volume = {2020}, journal = {European journal of organic chemistry}, number = {47}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202001378}, pages = {7373 -- 7384}, year = {2020}, abstract = {Prenylated flavanones were obtained from ortho-allyloxy chalcones through a one-pot sequence of Claisen rearrangement and 6-endo-trig cyclization, followed by olefin cross metathesis of the intermediate allyl flavanones with 2-methyl-2-butene. The synthetic utility of this route is illustrated for the synthesis of several naturally occurring prenyl flavanones.}, language = {en} } @article{LoodTikkKruegeretal.2022, author = {Lood, Kajsa and Tikk, Triin and Kr{\"u}ger, Mandy and Schmidt, Bernd}, title = {Methylene capping facilitates cross-metathesis reactions of enals}, series = {The journal of organic chemistry}, volume = {87}, journal = {The journal of organic chemistry}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.1c02851}, pages = {3079 -- 3088}, year = {2022}, abstract = {Four combinations of type-I olefins isoeugenol and 4-hydroxy-3-methoxystyrene with type-II olefins acrolein and crotonaldehyde were investigated in cross-metathesis (CM) reactions. While both type-I olefins are suitable CM partners for this transformation, we observed synthetically useful conversions only with type-II olefin crotonaldehyde. For economic reasons, isoeugenol, a cheap xylochemical available from renewable lignocellulose or from clove oil, is the preferred type-I CM partner. Nearly quantitative conversions to coniferyl aldehyde by the CM reaction of isoeugenol and crotonaldehyde can be obtained at ambient temperature without a solvent or at high substrate concentrations of 2 mol.L-1 with the second-generation Hoveyda-Grubbs catalyst. Under these conditions, the ratio of reactants can be reduced to 1:1.5 and catalyst loadings as low as 0.25 mol \% are possible. The high reactivity of the isoeugenol/crotonaldehyde combination in olefin metathesis reactions was demonstrated by a short synthesis of the natural product 7-methoxywutaifuranal, which was obtained from isoeugenol in a 44\% yield over five steps. We suggest that the superior performance of crotonaldehyde in the CM reactions investigated can be rationalized by "methylene capping", i.e., the steric stabilization of the propagating Ru-alkylidene species.}, language = {en} } @article{HermannsSchmidtGlowinskietal.2020, author = {Hermanns, Jolanda and Schmidt, Bernd and Glowinski, Ingrid and Keller, David}, title = {Online teaching in the course "organic chemistry" for nonmajor chemistry students}, series = {Journal of chemical education}, volume = {97}, journal = {Journal of chemical education}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-9584}, doi = {10.1021/acs.jchemed.0c00658}, pages = {3140 -- 3146}, year = {2020}, abstract = {In this communication the development of an online course on the topic organic chemistry for nonmajor chemistry students is described and discussed. For this online course, the existing classroom course was further developed. New elements such as podcasts, task navigators, and a forum for discussing the solving of tasks or problems with the content were added. This new online course was evaluated. Therefore, a questionnaire was developed. This consists of questions with regard to the longtime learning behavior of the students and to the online learning. The results of this evaluation show that a preference for online learning and a preference for classroom teaching can be measured separately in two scales. Students values on the scale representing a preference for online learning correlate positively and significantly with confidence in the choice of the study subject, enthusiasm about the subject, and the ability to organize their learning, learning environment, and time management. They correlate also with the satisfaction concerning the materials provided. Students values for one of those teaching methods also correlate with their rating with regard to their exam preparation. Values representing a preference for online teaching correlate positively with students better feeling of exam preparation. Values representing a preference for classroom teaching show negative correlations with the values representing students similar or even better preparation for the exams as a result of online teaching. It is therefore not surprising that the ratings for the two scales correlate with the wish for a combination of online teaching and classroom teaching in the future. As a solution, a new course concept for the time after the corona virus crisis that suits all students is outlined in the outlook.}, language = {en} } @misc{SchmidtHauke2013, author = {Schmidt, Bernd and Hauke, Sylvia}, title = {Cross metathesis of allyl alcohols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95037}, pages = {4194 -- 4206}, year = {2013}, abstract = {Under standard conditions the cross metathesis of allyl alcohols and methyl acrylate is accompanied by the formation of ketones, resulting from uncontrolled and undesired double bond isomerization. By conducting the CM in the presence of phenol, the catalyst loading and the reaction time required for quantiative conversion can be reduced, and isomerization can be suppressed. On the other hand, consecutive isomerization can be deliberately promoted by evaporating excess methyl acrylate after completing cross metathesis and by adding a base or silane as chemical triggers.}, language = {en} } @book{BuddrusSchmidt2015, author = {Buddrus, Joachim and Schmidt, Bernd}, title = {Grundlagen der organischen Chemie}, edition = {5., {\"u}berarb. und aktualisierte Aufl.}, publisher = {de Gruyter}, address = {Berlin}, isbn = {978-3-11-030559-3}, publisher = {Universit{\"a}t Potsdam}, pages = {946}, year = {2015}, language = {de} } @book{MetteCzechKlausetal.1994, author = {Mette, Dieter and Czech, Olaf and Klaus, Elisabeth and Meier, Bernd and Neumann, Karin and Schmeer, Ernst and Schmidt, Volkhard and Sachs, Conrad}, title = {Arbeitslehre aktuell : Schwerpunkt Technik, Bd. 1}, publisher = {Oldenbourg}, address = {M{\"u}nchen}, isbn = {3-486-88725-4}, pages = {208 S.}, year = {1994}, language = {de} } @article{DamesZimmermannSchmidtetal.2006, author = {Dames, Petra and Zimmermann, Bernhard and Schmidt, Ruth and Rein, Julia and Voss, Martin and Schewe, Bettina and Walz, Bernd and Baumann, Otto}, title = {cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands}, issn = {0027-8424}, doi = {10.1073/pnas.0600011103}, year = {2006}, abstract = {Reversible assembly of the V0V1 holoenzyme from V-0 and V-1 subcomplexes is a widely used mechanism for regulation of vacuolar-type H+-ATPases (V-ATPases) in animal cells. in the blowfly (Calliphora vicina) salivary gland, V- ATPase is located in the apical membrane of the secretory cells and energizes the secretion of a KCl-rich saliva in response to the hormone serotonin. We have examined whether the CAMP pathway, known to be activated by serotonin, controls V-ATPase assembly and activity. Fluorescence measurements of pH changes at the luminal surface of isolated glands demonstrate that CAMP, Sp-adenosine-3',5'-cyclic monophosphorothioate, or forskolin, similar to serotonin, cause V-ATPase-dependent luminal acidification. In addition, V-ATPase-dependent ATP hydrolysis increases upon treatment with these agents. Immunofluorescence microscopy and pelleting assays have demonstrated further that V, components become translocated from the cytoplasm to the apical membrane and V-ATPase holoenzymes are assembled at the apical membrane during conditions that increase intracellular cAMP. Because these actions occur without a change in cytosolic Ca2+, our findings suggest that the cAMP pathway mediates the reversible assembly and activation of V-ATPase molecules at the apical membrane upon hormonal stimulus}, language = {en} } @article{DamesSchmidtWalzetal.2004, author = {Dames, Petra and Schmidt, R. and Walz, Bernd and Baumann, Otto}, title = {Regulation of vacuolar-type H+-ATPase (vATPase) in blowfly salivary glands}, issn = {0171-9335}, year = {2004}, language = {en} } @article{SchmidtWalz2004, author = {Schmidt, R. and Walz, Bernd}, title = {Serotonin and histamine produce different spatiotemporal Ca2+ signals in blowfly salivary glands}, issn = {0171-9335}, year = {2004}, language = {en} } @article{AltmannToerjekBergeretal.2003, author = {Altmann, Thomas and T{\"o}rjek, Otto and Berger, Dieter and Meyer, Rhonda C. and M{\"u}ssig, Carsten and Schmidt, K. J. and Sorensen, T. R. and Weisshaar, Bernd and Olds-Mitchell, T.}, title = {Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis}, year = {2003}, language = {en} } @article{KarrasHolecBednarovaetal.2018, author = {Karras, Manfred and Holec, Jan and Bednarova, Lucie and Pohl, Radek and Schmidt, Bernd and Stara, Irena G. and Stary, Ivo}, title = {Asymmetric Synthesis of Nonracemic 2-Amino[6]helicenes and Their Self-Assembly into Langmuir Films}, series = {The journal of organic chemistry}, volume = {83}, journal = {The journal of organic chemistry}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.8b00538}, pages = {5523 -- 5538}, year = {2018}, abstract = {Alternative ways of preparing nonracemic 2-amino[6]helicene derivatives were explored. The enantioselective [2 + 2 + 2] cycloisomerization of a nonchiral triyne under Ni(cod)(2)/(R)-QUINAP catalysis delivered the enantioenriched (+)-(P)-2-aminodibenzo[6]helicene derivative in 67\% ee. An ultimate "point-to-helical" chirality transfer was observed in the cyclization of enantiopure triynes mediated by Ni(CO)(2)(PPh3)(2) affording (-)-(M)- or (+)-(P)-7,8-bis(p-tolyl)hexahelicen-2-amine in >99\% ee as well as its benzoderivative in >99\% ee. The latter mode of stereocontrol was inefficient for a 2-aminobenzo[6]helicene congener with an embedded five-membered ring. The rac-, (-)-(M)-, and (+)-(P)-7,8-bis(p-tolyl)hexahelicen-2-amines formed Langmuir monolayers at the air water interface featuring practically identical surface pressure vs mean molecular area isotherms. The corresponding Langmuir-Blodgett films on quartz or silicon substrates were characterized by UV vis/ECD spectroscopy and AFM microscopy, respectively.}, language = {en} }