@misc{ScarpeciZanorCarrilloetal.2007, author = {Scarpeci, Telma E. and Zanor, Mar{\´i}a I. and Carrillo, N{\´e}stor and Mueller-Roeber, Bernd and Valle, Estela M.}, title = {Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {866}, issn = {1866-8372}, doi = {10.25932/publishup-43425}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434254}, pages = {361 -- 378}, year = {2007}, abstract = {The antioxidant defense system involves complex functional coordination of multiple components in different organelles within the plant cell. Here, we have studied the Arabidopsis thaliana early response to the generation of superoxide anion in chloroplasts during active photosynthesis. We exposed plants to methyl viologen (MV), a superoxide anion propagator in the light, and performed biochemical and expression profiling experiments using Affymetrix ATH1 GeneChip(R) microarrays under conditions in which photosynthesis and antioxidant enzymes were active. Data analysis identified superoxide-responsive genes that were compared with available microarray results. Examples include genes encoding proteins with unknown function, transcription factors and signal transduction components. A common GAAAAGTCAAAC motif containing the W-box consensus sequence of WRKY transcription factors, was found in the promoters of genes highly up-regulated by superoxide. Band shift assays showed that oxidative treatments enhanced the specific binding of leaf protein extracts to this motif. In addition, GUS reporter gene fused to WRKY30 promoter, which contains this binding motif, was induced by MV and H2O2. Overall, our study suggests that genes involved in signalling pathways and with unknown functions are rapidly activated by superoxide anion generated in photosynthetically active chloroplasts, as part of the early antioxidant response of Arabidopsis leaves.}, language = {en} } @article{ScarpeciZanorMuellerRoeberetal.2013, author = {Scarpeci, Telma E. and Zanor, Maria I. and M{\"u}ller-R{\"o}ber, Bernd and Valle, Estela M.}, title = {Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana}, series = {PLANT MOLECULAR BIOLOGY}, volume = {83}, journal = {PLANT MOLECULAR BIOLOGY}, number = {3}, publisher = {SPRINGER}, address = {DORDRECHT}, issn = {0167-4412}, doi = {10.1007/s11103-013-0090-8}, pages = {265 -- 277}, year = {2013}, abstract = {AtWRKY30 belongs to a higher plant transcription factor superfamily, which responds to pathogen attack. In previous studies, the AtWRKY30 gene was found to be highly and rapidly induced in Arabidopsis thaliana leaves after oxidative stress treatment. In this study, electrophoretic mobility shift assays showed that AtWRKY30 binds with high specificity and affinity to the WRKY consensus sequence (W-box), and also to its own promoter. Analysis of the AtWRKY30 expression pattern by qPCR and using transgenic Arabidopsis lines carrying AtWRKY30 promoter-beta-glucuronidase fusions showed transcriptional activity in leaves subjected to biotic or abiotic stress. Transgenic Arabidopsis plants constitutively overexpressing AtWRKY30 (35S::W30 lines) were more tolerant than wild-type plants to oxidative and salinity stresses during seed germination. The results presented here show that AtWRKY30 is responsive to several stress conditions either from abiotic or biotic origin, suggesting that AtWRKY30 could have a role in the activation of defence responses at early stages of Arabidopsis growth by binding to W-boxes found in promoters of many stress/developmentally regulated genes.}, language = {en} }