@article{RyabchunSakhnoStumpeetal.2017, author = {Ryabchun, Alexander and Sakhno, Oksana and Stumpe, Joachim and Bobrovsky, Alexey}, title = {Full-Polymer Cholesteric Composites for Transmission and Reflection Holographic Gratings}, series = {Advanced optical materials}, volume = {5}, journal = {Advanced optical materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.201700314}, pages = {376 -- 379}, year = {2017}, abstract = {A new type of self-organized materials based on cholesteric networks filled with photoactive side-chain copolymer is being developed. Supramolecular helical structure of cholesteric polymer network resulting in the selective reflection is used as a photonic scaffold. Photochromic azobenzene-containing nematic copolymer is embedded in cholesteric scaffold and utilized as a photoactive media for optical pattering. 1D and 2D transmission diffraction gratings are successfully recorded in composite films by holographic technique. For the first time the possibility to create selective reflection gratings in cholesteric material mimicking the natural optical properties of cholesteric mesophase is demonstrated. That enables the coexistence of two selective gratings, where one has an intrinsic cholesteric periodic helical structure and the other is a holographic grating generated in photochromic polymer. The full-polymer composites provide high light-induced optical anisotropy due to effective photo-orientation of side-chain fragments of the azobenzene-containing liquid crystalline polymer, and prevent the degradation of the helical superstructure maintaining all optical properties of cholesteric mesophase. The proposed class of optical materials could be easily applied to a broad range of polymeric materials with specific functionality. The versatility of the adjustment and material preprogramming combined with high optical performance makes these materials a highly promising candidate for modern optical and photonic applications.}, language = {en} } @article{SakhnoGoldenbergStumpeetal.2009, author = {Sakhno, Oksana V. and Goldenberg, Leonid M. and Stumpe, Joachim and Smirnova, Tatiana N.}, title = {Effective volume holographic structures based on organic-inorganic photopolymer nanocomposites}, issn = {1464-4258}, doi = {10.1088/1464-4258/11/2/024013}, year = {2009}, abstract = {We demonstrate a practical approach for the development of a broad range of nanocomposites based on acrylate polymers and organically capped inorganic nanoparticles (NPs). The submicrometer scale volume patterning of the nanocomposites using holographic photopolymerization was investigated. The specific adjustment of both the material parameters (core-shell of the NP, monomer mixture, concentrations) and the patterning conditions led to materials that were suitable for the fabrication of effective optical diffractive elements and specific functional microdevices with light-emissive and nonlinear optical (NLO) properties. The nanocomposite preparation and properties, their holographic performance and some examples of functional polymer-NP structures are reported.}, language = {en} } @article{RyabchunKolloscheWegeneretal.2016, author = {Ryabchun, Alexander and Kollosche, Matthias and Wegener, Michael and Sakhno, Oksana}, title = {Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics}, series = {Advanced materials}, volume = {28}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201602881}, pages = {10217 -- 10223}, year = {2016}, abstract = {Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17\%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties.}, language = {en} }