@article{MyhreWolfChengetal.2018, author = {Myhre, Rolf H. and Wolf, Thomas J. A. and Cheng, Lan and Nandi, Saikat and Coriani, Sonia and G{\"u}hr, Markus and Koch, Henrik}, title = {A theoretical and experimental benchmark study of core-excited states in nitrogen}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {148}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5011148}, pages = {7}, year = {2018}, abstract = {The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. The computational results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure. Published by AIP Publishing.}, language = {en} } @article{WolfHolzmeierWagneretal.2017, author = {Wolf, Thomas J. A. and Holzmeier, Fabian and Wagner, Isabella and Berrah, Nora and Bostedt, Christoph and Bozek, John and Bucksbaum, Phil and Coffee, Ryan and Cryan, James and Farrell, Joe and Feifel, Raimund and Martinez, Todd J. and McFarland, Brian and Mucke, Melanie and Nandi, Saikat and Tarantelli, Francesco and Fischer, Ingo and G{\"u}hr, Markus}, title = {Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra}, series = {Applied sciences}, volume = {7}, journal = {Applied sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app7070681}, pages = {11}, year = {2017}, abstract = {Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymines neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.}, language = {en} } @article{WolfHolzmeierWagneretal.2017, author = {Wolf, Thomas J. A. and Holzmeier, Fabian and Wagner, Isabella and Berrah, Nora and Bostedt, Christoph and Bozek, John and Bucksbaum, Philip H. and Coffee, Ryan and Cryan, James and Farrell, Joe and Feifel, Raimund and Martinez, Todd J. and McFarland, Brian and Mucke, Melanie and Nandi, Saikat and Tarantelli, Francesco and Fischer, Ingo and G{\"u}hr, Markus}, title = {Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra}, series = {Applied Sciences}, volume = {7}, journal = {Applied Sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app7070681}, year = {2017}, abstract = {Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.}, language = {en} }