@article{AbdallaAharonianBenkhalietal.2019, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Arrieta, M. and Backes, M. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buchele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chand, T. and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V. and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J. -P. and Eschbach, S. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu. and Kosack, K. and Kraus, M. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lopez-Coto, R. and Lorentz, M. and Lypova, I. and Malyshev, D. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V. and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, R. M. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {H.E.S.S. observations of the flaring gravitationally lensed galaxy PKS 1830-211}, series = {Monthly notices of the Royal Astronomical Society}, volume = {486}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {H E S S Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stz1031}, pages = {3886 -- 3891}, year = {2019}, abstract = {PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.}, language = {en} } @article{AbdallaAdamAharonianetal.2019, author = {Abdalla, Hassan E. and Adam, R. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Ashkar, H. and Backes, M. and Martins, V. Barbosa and Barnard, M. and Becherini, Y. and Berge, D. and Bernloehr, K. and Blackwell, R. and B{\"o}ttcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bregeon, J. and Breuhaus, M. and Brun, F. and Brun, P. and Bryan, M. and B{\"u}chele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chand, T. and Chandra, S. and Chen, A. and Colafrancesco, S. and Curylo, M. and Davids, I. D. and Deil, C. and Devin, J. and DeWilt, P. and Dirson, L. and Djannati-Ata, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Feijen, K. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and F{\"u}ßling, Matthias and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jardin-Blicq, A. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Kostunin, D. and Kraus, M. and Lamanna, G. and Lau, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Levy, C. and Lohse, T. and Lypova, I and Mackey, J. and Majumdar, J. and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mares, A. and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Muller, J. and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Wilhelmi, E. de Ona and Ostrowski, M. and Oya, I and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Priyana Noel, A. and Prokhorov, D. A. and Prokoph, H. and P{\"u}hlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Remy, Q. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Sch{\"u}ssler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van Der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zacharias, Michael and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Ziegler, A. and Zorn, J. and Zywucka, N. and Meyer, M.}, title = {Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with HESS}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935704}, pages = {19}, year = {2019}, abstract = {The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2017, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Andersson, T. and Anguner, Ekrem Oǧuzhan and Arakawa, M. and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, J. Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Blackwell, R. and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Buechele, M. and Bulik, Tomasz and Capasso, M. and Carr, John and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Coffaro, M. and Colafrancesco, Sergio and Cologna, Gabriele and Condon, B. and Conrad, Jan and Cui, Y. and Davids, I. D. and Decock, J. and Degrange, B. and Deil, C. and Devin, J. and de Wilt, P. and Dirson, L. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dutson, K. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Richter, S. and Rieger, F. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Salek, D. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stycz, K. and Sushch, Iurii and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N.}, title = {Measurement of the EBL spectral energy distribution using the VHE gamma-ray spectra of HESS blazars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {606}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731200}, pages = {11}, year = {2017}, abstract = {Very high-energy gamma rays (VHE, E greater than or similar to 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE gamma rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5 sigma, and the intensity of the EBL obtained in different spectral bands is presented together with the associated gamma-ray horizon.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2017, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Anguner, Ekrem Oǧuzhan and Arakawa, M. and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, J. Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Blackwell, R. and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Buechele, M. and Bulik, Tomasz and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Colafrancesco, Sergio and Condon, B. and Conrad, Jan and Davids, I. D. and Decock, J. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Donath, A. and Dutson, K. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Emery, G. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Garrigoux, T. and Gate, F. and Giavitto, G. and Giebels, B. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Kruer, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Malyshev, D. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Shiningayamwe, K. and Simoni, R. and Sol, H. and Spanier, F. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Sushch, Iurii and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with HESS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {850}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {HESS Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aa97d2}, pages = {628 -- 650}, year = {2017}, abstract = {We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between 270 GeV to 8.55 TeV. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.}, language = {en} } @article{AbdallaAharonianAitBenkhalietal.2018, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Ait Benkhali, Faical and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Arrieta, M. and Backes, Michael and Barnard, M. and Becherini, Yvonne and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernl{\"o}hr, Konrad and Blackwell, R. and B{\"o}ttcher, Markus and Boisson, C. and Bolmont, Julien and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and B{\"u}chele, M. and Bulik, Tomasz and Bylund, Tomas and Capasso, Massimo and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, Matteo and Chakraborty, Nachiketa and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, Sergio and Condon, B. and Davids, Isak and Deil, Christoph and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, Axel and Doroshenko, Victor and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J. -P. and Eschbach, Stefan and Fegan, S. and Fiasson, Armand and Fontaine, G. and Funk, Sebastian and F{\"u}ßling, Matthias and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, Gianluca and Eisenacher Glawion, Dorit and Glicenstein, Jean-Fran{\c{c}}ois and Gottschall, D. and Grondin, Marie-H{\´e}l{\`e}ne and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, Gilles and Hermann, G. and Hinton, James Anthony and Hofmann, Werner and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, David and Jankowsky, Felix and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzyński, Krzysztof and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Kruger, P. P. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Lopez-Coto, R. and Lypova, I. and Malyshev, D. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V. and Saito, S. and Sanchez, D. A. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Spanier, F. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, R. M. and White, R. and Wierzcholska, A. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zorn, J. and Zywucka, N. and Cirelli, M. and Panci, P. and Sala, F. and Silk, J. and Taoso, M.}, title = {Searches for gamma-ray lines and 'pure WIMP' spectra from Dark Matter annihilations in dwarf galaxies with H.E.S.S.}, series = {Journal of cosmology and astroparticle physics}, journal = {Journal of cosmology and astroparticle physics}, number = {11}, publisher = {IOP Publishing Ltd. (Bristol)}, address = {Bristol}, organization = {HESS Collaboration}, issn = {1475-7516}, doi = {10.1088/1475-7516/2018/11/037}, pages = {22}, year = {2018}, abstract = {Dwarf spheroidal galaxies are among the most promising targets for detecting signals of Dark Matter (DM) annihilations. The H.E.S.S. experiment has observed five of these systems for a total of about 130 hours. The data are re-analyzed here, and, in the absence of any detected signals, are interpreted in terms of limits on the DM annihilation cross section. Two scenarios are considered: i) DM annihilation into mono-energetic gamma-rays and ii) DM in the form of pure WIMP multiplets that, annihilating into all electroweak bosons, produce a distinctive gamma-ray spectral shape with a high-energy peak at the DM mass and a lower-energy continuum. For case i), upper limits at 95\% confidence level of about less than or similar to 3 x 10(-25) cm(3) s(-1) are obtained in the mass range of 400 GeV to 1TeV. For case ii), the full spectral shape of the models is used and several excluded regions are identified, but the thermal masses of the candidates are not robustly ruled out.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Finley, J. P. and Fortson, L. and Furniss, Amy and Gent, A. and Gillanders, Gerald H. and Hanna, David and Hassan, T. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I. and Santander, Marcos and Schlenstedt, S. and Sembroski, G. H. and Sushch, Iurii and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J. and Zitzer, B. and Acciari, V. A. and Ansoldi, S. and Antonelli, L. A. and Engels, A. Arbet and Baack, D. and Babic, A. and Banerjee, B. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, Josefa and Bednarek, Wlodek and Bernardini, Elisa and Berti, A. and Besenrieder, J. and Bhattacharyya, W. and Bigongiari, C. and Biland, A. and Blanch, O. and Bonnoli, G. and Busetto, G. and Carosi, R. and Ceribella, G. and Cikota, S. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, J. and Di Pierro, F. and Do Souto Espinera, E. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Elsaesser, D. and Ramazani, V. Fallah and Fattorini, A. and Fernandez-Barral, A. and Ferrara, G. and Fidalgo, D. and Foffano, L. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Gallozzi, S. and Lopez, R. J. Garcia and Garczarczyk, M. and Gasparyan, S. and Gaug, Markus and Giammaria, P. and Godinovic, N. and Guberman, D. and Hadasch, D. and Hahn, A. and Herrera, J. and Hoang, J. and Hrupec, D. and Inoue, S. and Ishio, K. and Iwamura, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lamastra, A. and Lelas, D. and Leone, Francesco and Lindfors, E. and Lombardi, S. and Longo, Francesco and Lopez, M. and Lopez-Oramas, A. and Machado de Oliveira Fraga, B. and Maggio, C. and Majumdar, P. and Makariev, M. and Mallamaci, M. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Masuda, S. and Mazin, D. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Molina, E. and Moralejo, A. and Moreno, V. and Moretti, E. and Munar-Adrover, Pere and Neustroev, V. and Niedzwiecki, Andrzej and Rosillo, Mireia Nievas and Nigro, C. and Nilsson, Kari and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Noethe, M. and Paiano, Simona and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Penil, P. and Peresano, M. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Rhode, W. and Ribo, Marc and Rico, J. and Righi, C. and Rugliancich, A. and Saha, Lab and Sahakyan, Narek and Saito, T. and Satalecka, K. and Schweizer, T. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Somero, A. and Stamerra, A. and Strzys, M. and Suric, T. and Tavecchio, Fabrizio and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Tsujimoto, S. and van Scherpenberg, J. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Will, M. and Zaric, D.}, title = {Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {867}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration MAGIC Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aae70e}, pages = {8}, year = {2018}, abstract = {We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130.}, language = {en} } @article{LeFriantIshizukaBoudonetal.2015, author = {Le Friant, A. and Ishizuka, O. and Boudon, G. and Palmer, M. R. and Talling, P. J. and Villemant, B. and Adachi, T. and Aljahdali, M. and Breitkreuz, C. and Brunet, M. and Caron, B. and Coussens, M. and Deplus, C. and Endo, D. and Feuillet, N. and Fraas, A. J. and Fujinawa, A. and Hart, M. B. and Hatfield, R. G. and Hornbach, M. and Jutzeler, M. and Kataoka, K. S. and Komorowski, J. -C. and Lebas, E. and Lafuerza, S. and Maeno, F. and Manga, M. and Martinez-Colon, M. and McCanta, M. and Morgan, S. and Saito, T. and Slagle, A. and Sparks, S. and Stinton, A. and Stroncik, Nicole and Subramanyam, K. S. V. and Tamura, Yui and Trofimovs, J. and Voight, B. and Wall-Palmer, D. and Wang, F. and Watt, S. F. L.}, title = {Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340}, series = {Geochemistry, geophysics, geosystems}, volume = {16}, journal = {Geochemistry, geophysics, geosystems}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/2014GC005652}, pages = {420 -- 442}, year = {2015}, abstract = {IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.}, language = {en} } @article{SaitoKorupUchidaetal.2014, author = {Saito, H. and Korup, Oliver and Uchida, T. and Hayashi, S. and Oguchi, T.}, title = {Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan}, series = {Geology}, volume = {42}, journal = {Geology}, number = {11}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G35680.1}, pages = {999 -- 1002}, year = {2014}, abstract = {Dealing with predicted increases in extreme weather conditions due to climate change requires robust knowledge about controls on rainfall-triggered landslides. We explore relationships between rainfall and landslide size throughout the Japanese archipelago. We test whether the total volume of landslides can be predicted directly from rainfall totals, intensity, and duration using a nationwide inventory of 4744 rainfall-triggered landslides recorded from A.D. 2001 to 2011. We find that larger landslides were more abundant at the expense of smaller ones when total, maximum, and mean rainfall intensity exceeded similar to 250 mm, similar to 35 mm/h, and similar to 4 mm/h, respectively. Frequency distributions of these rainfall parameters are peaked and heavily skewed. Yet neither the most frequent nor the most extreme values of these rainfall metrics coincide consistently with the maximum landslide volumes. A striking decrease of landslide volumes at both mean and maximum rainfall intensity, as well as duration, points to an exhaustion in hillslope geomorphic response regardless of sample size, landslide type, mobilized volume, dominant lithology, or reporting bias. Our results underscore substantial offsets between the peaks of rainfall metrics and maximum associated landslide volumes, thus complicating straightforward estimates of geomorphic work from metrics of rainstorm magnitude or frequency. Only the rainfall total appears to be a suitable monotonic predictor of landslide volumes mobilized during typhoons and frontal storms.}, language = {en} }