@article{TaalStPourcainThieringetal.2012, author = {Taal, H. Rob and St Pourcain, Beate and Thiering, Elisabeth and Das, Shikta and Mook-Kanamori, Dennis O. and Warrington, Nicole M. and Kaakinen, Marika and Kreiner-Moller, Eskil and Bradfield, Jonathan P. and Freathy, Rachel M. and Geller, Frank and Guxens, Monica and Cousminer, Diana L. and Kerkhof, Marjan and Timpson, Nicholas J. and Ikram, M. Arfan and Beilin, Lawrence J. and Bonnelykke, Klaus and Buxton, Jessica L. and Charoen, Pimphen and Chawes, Bo Lund Krogsgaard and Eriksson, Johan and Evans, David M. and Hofman, Albert and Kemp, John P. and Kim, Cecilia E. and Klopp, Norman and Lahti, Jari and Lye, Stephen J. and McMahon, George and Mentch, Frank D. and Mueller-Nurasyid, Martina and O'Reilly, Paul F. and Prokopenko, Inga and Rivadeneira, Fernando and Steegers, Eric A. P. and Sunyer, Jordi and Tiesler, Carla and Yaghootkar, Hanieh and Breteler, Monique M. B. and Debette, Stephanie and Fornage, Myriam and Gudnason, Vilmundur and Launer, Lenore J. and van der Lugt, Aad and Mosley, Thomas H. and Seshadri, Sudha and Smith, Albert V. and Vernooij, Meike W. and Blakemore, Alexandra I. F. and Chiavacci, Rosetta M. and Feenstra, Bjarke and Fernandez-Banet, Julio and Grant, Struan F. A. and Hartikainen, Anna-Liisa and van der Heijden, Albert J. and Iniguez, Carmen and Lathrop, Mark and McArdle, Wendy L. and Molgaard, Anne and Newnham, John P. and Palmer, Lyle J. and Palotie, Aarno and Pouta, Annneli and Ring, Susan M. and Sovio, Ulla and Standl, Marie and Uitterlinden, Andre G. and Wichmann, H-Erich and Vissing, Nadja Hawwa and DeCarli, Charles and van Duijn, Cornelia M. and McCarthy, Mark I. and Koppelman, Gerard H. and Estivill, Xavier and Hattersley, Andrew T. and Melbye, Mads and Bisgaard, Hans and Pennell, Craig E. and Widen, Elisabeth and Hakonarson, Hakon and Smith, George Davey and Heinrich, Joachim and Jarvelin, Marjo-Riitta and Jaddoe, Vincent W. V. and Adair, Linda S. and Ang, Wei and Atalay, Mustafa and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Davis, Oliver S. P. and Elliott, Paul and Evans, David M. and Feenstra, Bjarke and Flexeder, Claudia and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Geller, Frank and Groen-Blokhuis, Maria and Goh, Liang-Kee and Guxens, Monica and Haworth, Claire M. A. and Hadley, Dexter and Hebebrand, Johannes and Hinney, Anke and Hirschhorn, Joel N. and Holloway, John W. and Holst, Claus and Hottenga, Jouke Jan and Horikoshi, Momoko and Huikari, Ville and Hypponen, Elina and Iniguez, Carmen and Kaakinen, Marika and Kilpelainen, Tuomas O. and Kirin, Mirna and Kowgier, Matthew and Lakka, Hanna-Maaria and Lange, Leslie A. and Lawlor, Debbie A. and Lehtimaki, Terho and Lewin, Alex and Lindgren, Cecilia and Lindi, Virpi and Maggi, Reedik and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Murray, Jeffrey C. and Nivard, Michel and Nohr, Ellen Aagaard and Ntalla, Ioanna and Oken, Emily and O'Reilly, Paul F. and Palmer, Lyle J. and Panoutsopoulou, Kalliope and Pararajasingham, Jennifer and Prokopenko, Inga and Rodriguez, Alina and Salem, Rany M. and Sebert, Sylvain and Siitonen, Niina and Sovio, Ulla and St Pourcain, Beate and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Teo, Yik-Ying and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Zeggini, Eleftheria and Boomsma, Dorret I. and Cooper, Cyrus and Estivill, Xavier and Gillman, Matthew and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Hocher, Berthold and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Lakka, Timo A. and McCarthy, Mark I. and Melbye, Mads and Mohlke, Karen L. and Dedoussis, George V. and Ong, Ken K. and Pearson, Ewan R. and Pennell, Craig E. and Price, Thomas S. and Power, Chris and Raitakari, Olli T. and Saw, Seang-Mei and Scherag, Andre and Simell, Olli and Sorensen, Thorkild I. A. and Timpson, Nicholas J. and Widen, Elisabeth and Wilson, James F. and Ang, Wei and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Elliott, Paul and Evans, David M. and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Groen-Blokhuis, Maria and Guxens, Monica and Hadley, Dexter and Hottenga, Jouke Jan and Huikari, Ville and Hypponen, Elina and Kaakinen, Marika and Kowgier, Matthew and Lawlor, Debbie A. and Lewin, Alex and Lindgren, Cecilia and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Nivard, Michel and O'Reilly, Paul F. and Palmer, Lyle J. and Prokopenko, Inga and Rodriguez, Alina and Sebert, Sylvain and Sovio, Ulla and St Pourcain, Beate and Standl, Marie and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Boomsma, Dorret I. and Estivill, Xavier and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and McCarthy, Mark I. and Pennell, Craig E. and Power, Chris and Timpson, Nicholas J. and Widen, Elisabeth and Ikram, M. Arfan and Fornage, Myriam and Smith, Albert V. and Seshadri, Sudha and Schmidt, Reinhold and Debette, Stephanie and Vrooman, Henri A. and Sigurdsson, Sigurdur and Ropele, Stefan and Coker, Laura H. and Longstreth, W. T. and Niessen, Wiro J. and DeStefano, Anita L. and Beiser, Alexa and Zijdenbos, Alex P. and Struchalin, Maksim and Jack, Clifford R. and Nalls, Mike A. and Au, Rhoda and Hofman, Albert and Gudnason, Haukur and van der Lugt, Aad and Harris, Tamara B. and Meeks, William M. and Vernooij, Meike W. and van Buchem, Mark A. and Catellier, Diane and Gudnason, Vilmundur and Windham, B. Gwen and Wolf, Philip A. and van Duijn, Cornelia M. and Mosley, Thomas H. and Schmidt, Helena and Launer, Lenore J. and Breteler, Monique M. B. and DeCarli, Charles}, title = {Common variants at 12q15 and 12q24 are associated with infant head circumference}, series = {Nature genetics}, volume = {44}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Cohorts Heart Aging Res Genetic Ep, Early Genetics Lifecourse Epidemio, Early Growth Genetics EGG Consorti}, issn = {1061-4036}, doi = {10.1038/ng.2238}, pages = {532 -- +}, year = {2012}, abstract = {To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.}, language = {en} } @article{TiegsCostelloIskenetal.2019, author = {Tiegs, Scott D. and Costello, David M. and Isken, Mark W. and Woodward, Guy and McIntyre, Peter B. and Gessner, Mark O. and Chauvet, Eric and Griffiths, Natalie A. and Flecker, Alex S. and Acuna, Vicenc and Albarino, Ricardo and Allen, Daniel C. and Alonso, Cecilia and Andino, Patricio and Arango, Clay and Aroviita, Jukka and Barbosa, Marcus V. M. and Barmuta, Leon A. and Baxter, Colden V. and Bell, Thomas D. C. and Bellinger, Brent and Boyero, Luz and Brown, Lee E. and Bruder, Andreas and Bruesewitz, Denise A. and Burdon, Francis J. and Callisto, Marcos and Canhoto, Cristina and Capps, Krista A. and Castillo, Maria M. and Clapcott, Joanne and Colas, Fanny and Colon-Gaud, Checo and Cornut, Julien and Crespo-Perez, Veronica and Cross, Wyatt F. and Culp, Joseph M. and Danger, Michael and Dangles, Olivier and de Eyto, Elvira and Derry, Alison M. and Diaz Villanueva, Veronica and Douglas, Michael M. and Elosegi, Arturo and Encalada, Andrea C. and Entrekin, Sally and Espinosa, Rodrigo and Ethaiya, Diana and Ferreira, Veronica and Ferriol, Carmen and Flanagan, Kyla M. and Fleituch, Tadeusz and Shah, Jennifer J. Follstad and Frainer, Andre and Friberg, Nikolai and Frost, Paul C. and Garcia, Erica A. and Lago, Liliana Garcia and Garcia Soto, Pavel Ernesto and Ghate, Sudeep and Giling, Darren P. and Gilmer, Alan and Goncalves, Jose Francisco and Gonzales, Rosario Karina and Graca, Manuel A. S. and Grace, Mike and Grossart, Hans-Peter and Guerold, Francois and Gulis, Vlad and Hepp, Luiz U. and Higgins, Scott and Hishi, Takuo and Huddart, Joseph and Hudson, John and Imberger, Samantha and Iniguez-Armijos, Carlos and Iwata, Tomoya and Janetski, David J. and Jennings, Eleanor and Kirkwood, Andrea E. and Koning, Aaron A. and Kosten, Sarian and Kuehn, Kevin A. and Laudon, Hjalmar and Leavitt, Peter R. and Lemes da Silva, Aurea L. and Leroux, Shawn J. and Leroy, Carri J. and Lisi, Peter J. and MacKenzie, Richard and Marcarelli, Amy M. and Masese, Frank O. and Mckie, Brendan G. and Oliveira Medeiros, Adriana and Meissner, Kristian and Milisa, Marko and Mishra, Shailendra and Miyake, Yo and Moerke, Ashley and Mombrikotb, Shorok and Mooney, Rob and Moulton, Tim and Muotka, Timo and Negishi, Junjiro N. and Neres-Lima, Vinicius and Nieminen, Mika L. and Nimptsch, Jorge and Ondruch, Jakub and Paavola, Riku and Pardo, Isabel and Patrick, Christopher J. and Peeters, Edwin T. H. M. and Pozo, Jesus and Pringle, Catherine and Prussian, Aaron and Quenta, Estefania and Quesada, Antonio and Reid, Brian and Richardson, John S. and Rigosi, Anna and Rincon, Jose and Risnoveanu, Geta and Robinson, Christopher T. and Rodriguez-Gallego, Lorena and Royer, Todd V. and Rusak, James A. and Santamans, Anna C. and Selmeczy, Geza B. and Simiyu, Gelas and Skuja, Agnija and Smykla, Jerzy and Sridhar, Kandikere R. and Sponseller, Ryan and Stoler, Aaron and Swan, Christopher M. and Szlag, David and Teixeira-de Mello, Franco and Tonkin, Jonathan D. and Uusheimo, Sari and Veach, Allison M. and Vilbaste, Sirje and Vought, Lena B. M. and Wang, Chiao-Ping and Webster, Jackson R. and Wilson, Paul B. and Woelfl, Stefan and Xenopoulos, Marguerite A. and Yates, Adam G. and Yoshimura, Chihiro and Yule, Catherine M. and Zhang, Yixin X. and Zwart, Jacob A.}, title = {Global patterns and drivers of ecosystem functioning in rivers and riparian zones}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav0486}, pages = {8}, year = {2019}, abstract = {River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.}, language = {en} } @article{MiddeldorpMahajanHorikoshietal.2019, author = {Middeldorp, Christel M. and Mahajan, Anubha and Horikoshi, Momoko and Robertson, Neil R. and Beaumont, Robin N. and Bradfield, Jonathan P. and Bustamante, Mariona and Cousminer, Diana L. and Day, Felix R. and De Silva, N. Maneka and Guxens, Monica and Mook-Kanamori, Dennis O. and St Pourcain, Beate and Warrington, Nicole M. and Adair, Linda S. and Ahlqvist, Emma and Ahluwalia, Tarunveer Singh and Almgren, Peter and Ang, Wei and Atalay, Mustafa and Auvinen, Juha and Bartels, Meike and Beckmann, Jacques S. and Bilbao, Jose Ramon and Bond, Tom and Borja, Judith B. and Cavadino, Alana and Charoen, Pimphen and Chen, Zhanghua and Coin, Lachlan and Cooper, Cyrus and Curtin, John A. and Custovic, Adnan and Das, Shikta and Davies, Gareth E. and Dedoussis, George V. and Duijts, Liesbeth and Eastwood, Peter R. and Eliasen, Anders U. and Elliott, Paul and Eriksson, Johan G. and Estivill, Xavier and Fadista, Joao and Fedko, Iryna O. and Frayling, Timothy M. and Gaillard, Romy and Gauderman, W. James and Geller, Frank and Gilliland, Frank and Gilsanz, Vincente and Granell, Raquel and Grarup, Niels and Groop, Leif and Hadley, Dexter and Hakonarson, Hakon and Hansen, Torben and Hartman, Catharina A. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Hebebrand, Johannes and Heinrich, Joachim and Helgeland, Oyvind and Henders, Anjali K. and Henderson, John and Henriksen, Tine B. and Hirschhorn, Joel N. and Hivert, Marie-France and Hocher, Berthold and Holloway, John W. and Holt, Patrick and Hottenga, Jouke-Jan and Hypponen, Elina and Iniguez, Carmen and Johansson, Stefan and Jugessur, Astanand and Kahonen, Mika and Kalkwarf, Heidi J. and Kaprio, Jaakko and Karhunen, Ville and Kemp, John P. and Kerkhof, Marjan and Koppelman, Gerard H. and Korner, Antje and Kotecha, Sailesh and Kreiner-Moller, Eskil and Kulohoma, Benard and Kumar, Ashish and Kutalik, Zoltan and Lahti, Jari and Lappe, Joan M. and Larsson, Henrik and Lehtimaki, Terho and Lewin, Alexandra M. and Li, Jin and Lichtenstein, Paul and Lindgren, Cecilia M. and Lindi, Virpi and Linneberg, Allan and Liu, Xueping and Liu, Jun and Lowe, William L. and Lundstrom, Sebastian and Lyytikainen, Leo-Pekka and Ma, Ronald C. W. and Mace, Aurelien and Magi, Reedik and Magnus, Per and Mamun, Abdullah A. and Mannikko, Minna and Martin, Nicholas G. and Mbarek, Hamdi and McCarthy, Nina S. and Medland, Sarah E. and Melbye, Mads and Melen, Erik and Mohlke, Karen L. and Monnereau, Claire and Morgen, Camilla S. and Morris, Andrew P. and Murray, Jeffrey C. and Myhre, Ronny and Najman, Jackob M. and Nivard, Michel G. and Nohr, Ellen A. and Nolte, Ilja M. and Ntalla, Ioanna and Oberfield, Sharon E. and Oken, Emily and Oldehinkel, Albertine J. and Pahkala, Katja and Palviainen, Teemu and Panoutsopoulou, Kalliope and Pedersen, Oluf and Pennell, Craig E. and Pershagen, Goran and Pitkanen, Niina and Plomin, Robert and Power, Christine and Prasad, Rashmi B. and Prokopenko, Inga and Pulkkinen, Lea and Raikkonen, Katri and Raitakari, Olli T. and Reynolds, Rebecca M. and Richmond, Rebecca C. and Rivadeneira, Fernando and Rodriguez, Alina and Rose, Richard J. and Salem, Rany and Santa-Marina, Loreto and Saw, Seang-Mei and Schnurr, Theresia M. and Scott, James G. and Selzam, Saskia and Shepherd, John A. and Simpson, Angela and Skotte, Line and Sleiman, Patrick M. A. and Snieder, Harold and Sorensen, Thorkild I. A. and Standl, Marie and Steegers, Eric A. P. and Strachan, David P. and Straker, Leon and Strandberg, Timo and Taylor, Michelle and Teo, Yik-Ying and Thiering, Elisabeth and Torrent, Maties and Tyrrell, Jessica and Uitterlinden, Andre G. and van Beijsterveldt, Toos and van der Most, Peter J. and van Duijn, Cornelia M. and Viikari, Jorma and Vilor-Tejedor, Natalia and Vogelezang, Suzanne and Vonk, Judith M. and Vrijkotte, Tanja G. M. and Vuoksimaa, Eero and Wang, Carol A. and Watkins, William J. and Wichmann, H-Erich and Willemsen, Gonneke and Williams, Gail M. and Wilson, James F. and Wray, Naomi R. and Xu, Shujing and Xu, Cheng-Jian and Yaghootkar, Hanieh and Yi, Lu and Zafarmand, Mohammad Hadi and Zeggini, Eleftheria and Zemel, Babette S. and Hinney, Anke and Lakka, Timo A. and Whitehouse, Andrew J. O. and Sunyer, Jordi and Widen, Elisabeth E. and Feenstra, Bjarke and Sebert, Sylvain and Jacobsson, Bo and Njolstad, Pal R. and Stoltenberg, Camilla and Smith, George Davey and Lawlor, Debbie A. and Paternoster, Lavinia and Timpson, Nicholas J. and Ong, Ken K. and Bisgaard, Hans and Bonnelykke, Klaus and Jaddoe, Vincent W. V. and Tiemeier, Henning and Jarvelin, Marjo-Riitta and Evans, David M. and Perry, John R. B. and Grant, Struan F. A. and Boomsma, Dorret I. and Freathy, Rachel M. and McCarthy, Mark I. and Felix, Janine F.}, title = {The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia}, series = {European journal of epidemiology}, volume = {34}, journal = {European journal of epidemiology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, organization = {EArly Genetics Lifecourse EGG Consortium EGG Membership EAGLE Membership}, issn = {0393-2990}, doi = {10.1007/s10654-019-00502-9}, pages = {279 -- 300}, year = {2019}, abstract = {The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.}, language = {en} } @article{TownsleyBroosCorcoranetal.2011, author = {Townsley, Leisa K. and Broos, Patrick S. and Corcoran, Michael F. and Feigelson, Eric D. and Gagne, Marc and Montmerle, Thierry and Oey, M. S. and Smith, Nathan and Garmire, Gordon P. and Getman, Konstantin V. and Povich, Matthew S. and Evans, Nancy Remage and Naze, Yael and Parkin, E. R. and Preibisch, Thomas and Wang, Junfeng and Wou, Scott J. and Chu, You-Hua and Cohen, David H. and Gruendl, Robert A. and Hamaguchi, Kenji and King, Robert R. and Mac Low, Mordecai-Mark and McCaughrean, Mark J. and Moffat, Anthony F. J. and Oskinova, Lida and Pittard, Julian M. and Stassun, Keivan G. and Ud-Doula, Asif and Walborn, Nolan R. and Waldron, Wayne L. and Churchwell, Ed and Nictiols, J. S. and Owocki, Stanley P. and Schulz, Norbert S.}, title = {An introduction to the chandra carina complex project}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {194}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.1088/0067-0049/194/1/1}, pages = {28}, year = {2011}, abstract = {The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant H II regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60 ks pointings using the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of > 14,000 X-ray point sources;> 9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. In this introductory paper, we motivate the survey design, describe the Chandra observations, and present some simple results, providing a foundation for the 15 papers that follow in this special issue and that present detailed catalogs, methods, and science results.}, language = {en} } @article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @article{ArcherBenbowBirdetal.2019, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Chromey, A. J. and Cui, Wei and Falcone, A. and Feng, Qi and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Olivier and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, D. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {A Search for Pulsed Very High-energy Gamma-Rays from 13 Young Pulsars in Archival VERITAS Data}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {876}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab14f4}, pages = {14}, year = {2019}, abstract = {We conduct a search for periodic emission in the very high-energy (VHE) gamma-ray band (E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hr. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in nondetections of pulsed VHE gamma-rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95\% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar.}, language = {en} } @article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{BridgwaterScottBalaganskyetal.2001, author = {Bridgwater, D. and Scott, D. J. and Balagansky, V. V. and Timmerman, Martin Jan and Marker, Michael and Bushmin, S. S. and Alexeyev, N. L. and Daly, J. S.}, title = {Age and provenance of early Precambrian metasedimentary rocks in the Lapland-Kola Belt, Russia : evidence from Pb and Nd isotopic data}, year = {2001}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Christiansen, Jessie L. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gueta, O. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Kaur, A.}, title = {VERITAS Observations of the BL Lac Object TXS 0506+056}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aad053}, pages = {6}, year = {2018}, abstract = {On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event IC 170922A, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar TXS 0506+056. (3FGL J0509.4+ 0541), which was in an elevated gamma-ray emission state as measured by the Fermi satellite. Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E > 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+ 056 was detected by VERITAS with a significance of 5.8 standard deviations (sigma) in the full 35 hr data set. The average photon flux of the source during this period was (8.9 +/- 1.6). x. 10(-12) cm(-2) s(-1), or 1.6\% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of 4.8. +/-. 1.3.}, language = {en} } @article{DeinoDommainKelleretal.2019, author = {Deino, A. L. and Dommain, Ren{\´e} and Keller, C. B. and Potts, R. and Behrensmeyer, A. K. and Beverly, E. J. and King, J. and Heil, C. W. and Stockhecke, M. and Brown, E. T. and Moerman, J. and deMenocal, P. and Deocampo, D. and Garcin, Yannick and Levin, N. E. and Lupien, R. and Owen, R. B. and Rabideaux, N. and Russell, J. M. and Scott, J. and Riedl, S. and Brady, K. and Bright, J. and Clark, J. B. and Cohen, A. and Faith, J. T. and Noren, A. and Muiruri, V. and Renaut, R. and Rucina, S. and Uno, K.}, title = {Chronostratigraphic model of a high-resolution drill core record of the past million years from the Koora Basin, south Kenya Rift: Overcoming the difficulties of variable sedimentation rate and hiatuses}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {215}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, organization = {Olorgesailie Drilling Project Sci}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.05.009}, pages = {213 -- 231}, year = {2019}, abstract = {The Olorgesailie Drilling Project and the related Hominin Sites and Paleolakes Drilling Project in East Africa were initiated to test hypotheses and models linking environmental change to hominin evolution by drilling lake basin sediments adjacent to important archeological and paleoanthropological sites. Drill core OL012-1A recovered 139 m of sedimentary and volcaniclastic strata from the Koora paleolake basin, southern Kenya Rift, providing the opportunity to compare paleoenvironmental influences over the past million years with the parallel record exposed at the nearby Olorgesailie archeological site. To refine our ability to link core-to-outcrop paleoenvironmental records, we institute here a methodological framework for deriving a robust age model for the complex lithostratigraphy of OL012-1A. Firstly, chronostratigraphic control points for the core were established based on 4 Ar/39Ar ages from intercalated tephra deposits and a basal trachyte flow, as well as the stratigraphic position of the Brunhes-Matuyama geomagnetic reversal. This dataset was combined with the position and duration of paleosols, and analyzed using a new Bayesian algorithm for high-resolution age-depth modeling of hiatus-bearing stratigraphic sections. This model addresses three important aspects relevant to highly dynamic, nonlinear depositional environments: 1) correcting for variable rates of deposition, 2) accommodating hiatuses, and 3) quantifying realistic age uncertainty with centimetric resolution. Our method is applicable to typical depositional systems in extensional rifts as well as to drill cores from other dynamic terrestrial or aquatic environments. We use the core age model and lithostratigraphy to examine the inter connectivity of the Koora Basin to adjacent areas and sources of volcanism. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MakHayerPascuetal.2005, author = {Mak, Chris S. K. and Hayer, Anna and Pascu, S. I. and Watkins, Scott E. and Holmes, Andrew B. and K{\"o}hler, Anna and Friend, Richard H.}, title = {Blue-to-green electrophosphorescence of iridium-based cyclometallated materials.}, issn = {0022-4936}, doi = {10.1039/b508695gb70}, year = {2005}, language = {en} } @article{HoulahanCurrieCottenieetal.2007, author = {Houlahan, Jeff E. and Currie, David J. and Cottenie, Karl and Cumming, Graeme S. and Ernest, S. K. Morgan and Findlay, C. Scott and Fuhlendorf, Samuel D. and Gaedke, Ursula and Legendre, Pierre and Magnuson, John J. and McArdle, Brian H. and Muldavin, Esteban H. and Noble, David and Russell, Robert and Stevens, Richard D. and Willis, Trevor J. and Woiwod, Ian P. and Wondzell, Steve M.}, title = {Compensatory dynamics are rare in natural ecological communities}, issn = {0027-8424}, doi = {10.1073/pnas.0603798104}, year = {2007}, abstract = {In population ecology, there has been a fundamental controversy about the relative importance of competition- driven (density-dependent) population regulation vs. abiotic influences such as temperature and precipitation. The same issue arises at the community level; are population sizes driven primarily by changes in the abundances of cooccurring competitors (i.e., compensatory dynamics), or do most species have a common response to environmental factors? Competitive interactions have had a central place in ecological theory, dating back to Gleason, Volterra, Hutchison and MacArthur, and, more recently, Hubbell's influential unified neutral theory of biodiversity and biogeography. If competitive interactions are important in driving year-to-year fluctuations in abundance, then changes in the abundance of one species should generally be accompanied by compensatory changes in the abundances of others. Thus, one necessary consequence of strong compensatory forces is that, on average, species within communities will covary negatively. Here we use measures of community covariance to assess the prevalence of negative covariance in 41 natural communities comprising different taxa at a range of spatial scales. We found that species in natural communities tended to covary positively rather than negatively, the opposite of what would be expected if compensatory dynamics were important. These findings suggest that abiotic factors such as temperature and precipitation are more important than competitive interactions in driving year-to-year fluctuations in species abundance within communities.}, language = {en} } @article{TrinhEllisBlandHawthornetal.2013, author = {Trinh, Christopher Q. and Ellis, Simon C. and Bland-Hawthorn, Joss and Lawrence, Jon S. and Horton, Anthony J. and Leon-Saval, Sergio G. and Shortridge, Keith and Bryant, Julia and Case, Scott and Colless, Matthew and Couch, Warrick and Freeman, Kenneth and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Gers, Luke and Glazebrook, Karl and Haynes, Roger and Lee, Steve and O'Byrne, John and Miziarski, Stan and Roth, Martin M. and Schmidt, Brian and Tinney, Christopher G. and Zheng, Jessica}, title = {Gnosis - the first instrument to use fiber bragg gratings for OH suppression}, series = {The astronomical journal}, volume = {145}, journal = {The astronomical journal}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-6256}, doi = {10.1088/0004-6256/145/2/51}, pages = {13}, year = {2013}, abstract = {The near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to make from ground-based telescopes due to the bright background from the atmosphere. Nearly all of this background comes from the bright and narrow emission lines of atmospheric hydroxyl (OH) molecules. The atmospheric background cannot be easily removed from data because the brightness fluctuates unpredictably on short timescales. The sensitivity of ground-based optical astronomy far exceeds that of near-infrared astronomy because of this long-standing problem. GNOSIS is a prototype astrophotonic instrument that utilizes "OH suppression fibers" consisting of fiber Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47 and 1.7 mu m. GNOSIS was commissioned at the 3.9 m Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibers, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput (approximate to 60\%) and excellent suppression of the skylines by the OH suppression fibers, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS+IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise dominated. OH suppression fibers could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibers paired with a fiber-fed spectrograph will at least provide a real benefit at low resolving powers.}, language = {en} } @article{EvansDeviMaketal.2006, author = {Evans, Nicholas R. and Devi, Lekshmi Sudha and Mak, Chris S. K. and Watkins, Scott E. and Pascu, Sofia I. and K{\"o}hler, Anna and Friend, Richard H. and Williams, Charlotte K. and Holmes, Andrew B.}, title = {Triplet energy back transfer in conjugated polymers with pendant phosphorescent iridium complexes}, issn = {0002-7863}, doi = {10.1021/Ja0584267}, year = {2006}, abstract = {The nature of Dexter triplet energy transfer between bonded systems of a red phosphorescent iridium complex 13 and a conjugated polymer, polyfluorene, has been investigated in electrophosphorescent organic light-emitting diodes. Red- emitting phosphorescent iridium complexes based on the [Ir(btp)2(acac)]fragment (where btp is 2-(2 '- benzo[b]thienyl)pyridinato and acac is acetylacetonate) have been attached either directly (spacerless) or through a - (CH2)(8)-chain (octamethylene-tethered) at the 9-position of a 9-octylfluorene host. The resulting dibromo- functionalized spacerless (8) or octamethylene-tethered (12) fluorene monomers were chain extended by Suzuki polycondensations using the bis(boronate)-terminated fluorene macromonomers 16 in the presence of end-capping chlorobenzene solvent to produce the statistical spacerless (17) and octamethylene-tethered ( 18) copolymers containing an even dispersion of the pendant phosphorescent fragments. The spacerless monomer 12 adopts a face-to-face conformation with a separation of only 3.6 angstrom between the iridium complex and fluorenyl group, as shown by X-ray analysis of a single crystal, and this facilitates intramolecular triplet energy transfer in the spacerless copolymers 17. The photo- and electroluminescence efficiencies of the octamethylene-tethered copolymers 18 are double those of the spacerless copolymers 17, and this is consistent with suppression of the back transfer of triplets from the red phosphorescent iridium complex to the polyfluorene backbone in 18. The incorporation of a -(CH2)(8)- chain between the polymer host and phosphorescent guest is thus an important design principle for achieving higher efficiencies in those electrophosphorescent organic light-emitting diodes for which the triplet energy levels of the host and guest are similar}, language = {en} } @misc{MooijTrolleJeppesenetal.2010, author = {Mooij, Wolf M. and Trolle, Dennis and Jeppesen, Erik and Arhonditsis, George B. and Belolipetsky, Pavel V. and Chitamwebwa, Deonatus B. R. and Degermendzhy, Andrey G. and DeAngelis, Donald L. and Domis, Lisette Nicole de Senerpont and Downing, Andrea S. and Elliott, J. Alex and Fragoso Jr., Carlos Ruberto and Gaedke, Ursula and Genova, Svetlana N. and Gulati, Ramesh D. and H{\aa}kanson, Lars and Hamilton, David P. and Hipsey, Matthew R. and 't Hoen, Jochem and H{\"u}lsmann, Stephan and Los, F. Hans and Makler-Pick, Vardit and Petzoldt, Thomas and Prokopkin, Igor G. and Rinke, Karsten and Schep, Sebastiaan A. and Tominaga, Koji and Van Dam, Anne A. and Van Nes, Egbert H. and Wells, Scott A. and Janse, Jan H.}, title = {Challenges and opportunities for integrating lake ecosystem modelling approaches}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1326}, issn = {1866-8372}, doi = {10.25932/publishup-42983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429839}, pages = {35}, year = {2010}, abstract = {A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.}, language = {en} } @article{MooijTrolleJeppesenetal.2010, author = {Mooij, Wolf M. and Trolle, Dennis and Jeppesen, Erik and Arhonditsis, George B. and Belolipetsky, Pavel V. and Chitamwebwa, Deonatus B. R. and Degermendzhy, Andrey G. and DeAngelis, Donald L. and Domis, Lisette Nicole de Senerpont and Downing, Andrea S. and Elliott, J. Alex and Fragoso Jr, Carlos Ruberto and Gaedke, Ursula and Genova, Svetlana N. and Gulati, Ramesh D. and H{\aa}kanson, Lars and Hamilton, David P. and Hipsey, Matthew R. and 't Hoen, Jochem and H{\"u}lsmann, Stephan and Los, F. Hans and Makler-Pick, Vardit and Petzoldt, Thomas and Prokopkin, Igor G. and Rinke, Karsten and Schep, Sebastiaan A. and Tominaga, Koji and Van Dam, Anne A. and Van Nes, Egbert H. and Wells, Scott A. and Janse, Jan H.}, title = {Challenges and opportunities for integrating lake ecosystem modelling approaches}, series = {Aquatic ecology}, volume = {44}, journal = {Aquatic ecology}, publisher = {Springer Science + Business Media B.V.}, address = {Dordrecht}, issn = {1573-5125}, doi = {10.1007/s10452-010-9339-3}, pages = {633 -- 667}, year = {2010}, abstract = {A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.}, language = {en} } @article{JanssenArhonditsisBeusenetal.2015, author = {Janssen, Annette B. G. and Arhonditsis, George B. and Beusen, Arthur and Bolding, Karsten and Bruce, Louise and Bruggeman, Jorn and Couture, Raoul-Marie and Downing, Andrea S. and Elliott, J. Alex and Frassl, Marieke A. and Gal, Gideon and Gerla, Daan J. and Hipsey, Matthew R. and Hu, Fenjuan and Ives, Stephen C. and Janse, Jan H. and Jeppesen, Erik and Joehnk, Klaus D. and Kneis, David and Kong, Xiangzhen and Kuiper, Jan J. and Lehmann, Moritz K. and Lemmen, Carsten and Oezkundakci, Deniz and Petzoldt, Thomas and Rinke, Karsten and Robson, Barbara J. and Sachse, Rene and Schep, Sebastiaan A. and Schmid, Martin and Scholten, Huub and Teurlincx, Sven and Trolle, Dennis and Troost, Tineke A. and Van Dam, Anne A. and Van Gerven, Luuk P. A. and Weijerman, Mariska and Wells, Scott A. and Mooij, Wolf M.}, title = {Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective}, series = {Aquatic ecology : the international forum covering research in freshwater and marine environments}, volume = {49}, journal = {Aquatic ecology : the international forum covering research in freshwater and marine environments}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {1386-2588}, doi = {10.1007/s10452-015-9544-1}, pages = {513 -- 548}, year = {2015}, abstract = {Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5-10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary.}, language = {en} } @article{HeistermannCollisDixonetal.2015, author = {Heistermann, Maik and Collis, Scott and Dixon, M. J. and Giangrande, S. and Helmus, J. J. and Kelley, B. and Koistinen, J. and Michelson, D. B. and Peura, M. and Pfaff, T. and Wolff, D. B.}, title = {The emergence of open-source software for the weather radar community}, series = {Bulletin of the American Meteorological Society}, volume = {96}, journal = {Bulletin of the American Meteorological Society}, number = {1}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0003-0007}, doi = {10.1175/BAMS-D-13-00240.1}, pages = {117 -- +}, year = {2015}, abstract = {Weather radar analysis has become increasingly sophisticated over the past 50 years, and efforts to keep software up to date have generally lagged behind the needs of the users. We argue that progress has been impeded by the fact that software has not been developed and shared as a community. Recently, the situation has been changing. In this paper, the developers of a number of open-source software (OSS) projects highlight the potential of OSS to advance radar-related research. We argue that the community-based development of OSS holds the potential to reduce duplication of efforts and to create transparency in implemented algorithms while improving the quality and scope of the software. We also conclude that there is sufficiently mature technology to support collaboration across different software projects. This could allow for consolidation toward a set of interoperable software platforms, each designed to accommodate very specific user requirements.}, language = {en} } @article{EvansDeGioiaEastwoodGagneetal.2011, author = {Evans, Nancy Remage and DeGioia-Eastwood, Kathleen and Gagne, Marc and Townsley, Leisa and Broos, Patrick S. and Wolk, Scott J. and Naze, Yael and Corcoran, Michael and Oskinova, Lida and Moffat, Anthony F. J. and Wang, Junfeng and Walborn, Nolan R.}, title = {The search for low-mass companions of b stars in the Carina Nebula cluster trumpler 16}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {194}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.1088/0067-0049/194/1/13}, pages = {9}, year = {2011}, abstract = {We have developed lists of likely B3-A0 stars (called "late B" stars) in the young cluster Trumpler 16. The following criteria were used: location within 3' of eta Car, an appropriate V and B - V combination, and proper motion (where available). Color and magnitude cuts have been made assuming an E(B - V) = 0.55 mag +/- 0.1, which is a good approximation close to the center of Trumpler 16. These lists have been cross-correlated with X-ray sources found in the Chandra Carina Complex Project. Previous studies have shown that only very rarely (if at all) do late main-sequence B stars produce X-rays. We present evidence that the X-ray-detected sources are binaries with low-mass companions, since stars less massive than 1.4 M-circle dot are strong X-ray sources at the age of the cluster. Both the median X-ray energies and X-ray luminosities of these sources are in good agreement with values for typical low-mass coronal X-ray sources. We find that 39\% of the late B stars based on a list with proper motions have low-mass companions. Similarly, 32\% of a sample without proper motions have low-mass companions. We discuss the X-ray detection completeness. These results on low-mass companions of intermediate-mass stars are complementary to spectroscopic and interferometric results and probe new parameter space of low-mass companions at all separations. They do not support a steeply rising distribution of mass ratios to low masses for intermediate-mass (5 M-circle dot) primaries, such as would be found by random pairing from the initial mass function.}, language = {en} } @article{RadchukReedTeplitskyetal.2019, author = {Radchuk, Viktoriia and Reed, Thomas and Teplitsky, Celine and van de Pol, Martijn and Charmantier, Anne and Hassall, Christopher and Adamik, Peter and Adriaensen, Frank and Ahola, Markus P. and Arcese, Peter and Miguel Aviles, Jesus and Balbontin, Javier and Berg, Karl S. and Borras, Antoni and Burthe, Sarah and Clobert, Jean and Dehnhard, Nina and de Lope, Florentino and Dhondt, Andre A. and Dingemanse, Niels J. and Doi, Hideyuki and Eeva, Tapio and Fickel, J{\"o}rns and Filella, Iolanda and Fossoy, Frode and Goodenough, Anne E. and Hall, Stephen J. G. and Hansson, Bengt and Harris, Michael and Hasselquist, Dennis and Hickler, Thomas and Jasmin Radha, Jasmin and Kharouba, Heather and Gabriel Martinez, Juan and Mihoub, Jean-Baptiste and Mills, James A. and Molina-Morales, Mercedes and Moksnes, Arne and Ozgul, Arpat and Parejo, Deseada and Pilard, Philippe and Poisbleau, Maud and Rousset, Francois and R{\"o}del, Mark-Oliver and Scott, David and Carlos Senar, Juan and Stefanescu, Constanti and Stokke, Bard G. and Kusano, Tamotsu and Tarka, Maja and Tarwater, Corey E. and Thonicke, Kirsten and Thorley, Jack and Wilting, Andreas and Tryjanowski, Piotr and Merila, Juha and Sheldon, Ben C. and Moller, Anders Pape and Matthysen, Erik and Janzen, Fredric and Dobson, F. Stephen and Visser, Marcel E. and Beissinger, Steven R. and Courtiol, Alexandre and Kramer-Schadt, Stephanie}, title = {Adaptive responses of animals to climate change are most likely insufficient}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-10924-4}, pages = {14}, year = {2019}, abstract = {Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.}, language = {en} } @article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{NoonanTuckerFlemingetal.2018, author = {Noonan, Michael J. and Tucker, Marlee A. and Fleming, Christen H. and Akre, Thomas S. and Alberts, Susan C. and Ali, Abdullahi H. and Altmann, Jeanne and Antunes, Pamela Castro and Belant, Jerrold L. and Beyer, Dean and Blaum, Niels and Boehning-Gaese, Katrin and Cullen Jr, Laury and de Paula, Rogerio Cunha and Dekker, Jasja and Drescher-Lehman, Jonathan and Farwig, Nina and Fichtel, Claudia and Fischer, Christina and Ford, Adam T. and Goheen, Jacob R. and Janssen, Rene and Jeltsch, Florian and Kauffman, Matthew and Kappeler, Peter M. and Koch, Flavia and LaPoint, Scott and Markham, A. Catherine and Medici, Emilia Patricia and Morato, Ronaldo G. and Nathan, Ran and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and Paviolo, Agustin and Ramalho, Emiliano Estero and Rosner, Sascha and Schabo, Dana G. and Selva, Nuria and Sergiel, Agnieszka and da Silva, Marina Xavier and Spiegel, Orr and Thompson, Peter and Ullmann, Wiebke and Zieba, Filip and Zwijacz-Kozica, Tomasz and Fagan, William F. and Mueller, Thomas and Calabrese, Justin M.}, title = {A comprehensive analysis of autocorrelation and bias in home range estimation}, series = {Ecological monographs : a publication of the Ecological Society of America.}, volume = {89}, journal = {Ecological monographs : a publication of the Ecological Society of America.}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1344}, pages = {21}, year = {2018}, abstract = {Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman's rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ( N̂ area ) to quantify the information content of each data set. We found that AKDE 95\% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95\% (or 50\%) estimates was 95.3\% (or 50.1\%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing N̂ area. To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal's movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small N̂ area. While 72\% of the 369 empirical data sets had >1,000 total observations, only 4\% had an N̂ area >1,000, where 30\% had an N̂ area <30. In this frequently encountered scenario of small N̂ area, AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.}, language = {en} } @article{RipollLoridanDentonetal.2019, author = {Ripoll, Jean-Francois and Loridan, Vivien and Denton, Michael H. and Cunningham, Gregory and Reeves, G. and Santolik, O. and Fennell, Joseph and Turner, Drew L. and Drozdov, Alexander and Cervantes Villa, Juan Sebastian and Shprits, Yuri Y. and Thaller, Scott A. and Kurth, William S. and Kletzing, Craig A. and Henderson, Michael G. and Ukhorskiy, Aleksandr Y.}, title = {Observations and Fokker-Planck Simulations of the L-Shell, Energy, and Times}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA026111}, pages = {1125 -- 1142}, year = {2019}, abstract = {The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch angle (alpha(0)) is analyzed during the calm 11-day interval (4-15 March) following the 1 March 2013 storm. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, alpha(0)) regions persist through 11 days of hiss wave scattering; the pitch angle-dependent inner belt core (L similar to <2.2 and E < 700 keV), pitch angle homogeneous outer belt low-energy core (L > similar to 5 and E similar to < 100 keV), and a distinct pocket of electrons (L similar to [4.5, 5.5] and E similar to [0.7, 2] MeV). The pitch angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for alpha(0) similar to <60 degrees, E > 100 keV, 3.5 < L < L-pp similar to 6. Thus, observed unidirectional flux decays can be used to estimate local pitch angle diffusion rates in that region. Top-hat distributions are computed and observed at L similar to 3-3.5 and E = 100-300 keV.}, language = {en} }