@article{IntziegianniCasselRaufetal.2016, author = {Intziegianni, Konstantina and Cassel, Michael and Rauf, S. and White, S. and Rector, Michael V. and Kaplick, Hannes and Wahmkow, Gunnar and Kratzenstein, S. and Mayer, Frank}, title = {Influence of Age and Pathology on Achilles Tendon Properties During a Single-leg Jump}, series = {International journal of sports medicine}, volume = {37}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0042-108198}, pages = {973 -- 978}, year = {2016}, abstract = {Prevalence of Achilles tendinopathy increases with age leading to a weaker tendon with predisposition to rupture. Conclusive evidence of the influence of age and pathology on Achilles tendon (AT) properties remains limited, as previous studies are based on standardized isometric conditions. The study investigates the influence of age and pathology on AT properties during single-leg vertical jump (SLVJ). 10 children (C), 10 asymptomatic adults (A), and 10 tendinopathic patients (T) were included. AT elongation [mm] from rest to maximal displacement during a SLVJ on a force-plate was sonographically assessed. AT compliance [mm/N]) and strain [\%] was calculated by dividing elongation by peak ground reaction force [N] and length, respectively. One-way ANOVA followed by Bonferroni post-hoc correction (=0.05) were used to compare C with A and A with T. AT elongation (p=0.004), compliance (p=0.001), and strain were found to be statistically significant higher in C (27 +/- 3mm, 0.026 +/- 0.006[mm/N], 13 +/- 2\%) compared to A (21 +/- 4mm, 0.017 +/- 0.005[mm/N], 10 +/- 2\%). No statistically significant differences (p0.05) was found between A and T (25 +/- 5mm, 0.019 +/- 0.004[mm/N], 12 +/- 3\%). During SLVJ, tendon responded differently in regards to age and pathology with children having the most compliant AT. Higher compliance found in healthy tendons might be considered as a protective factor against load-related injuries.}, language = {en} } @article{UdDinRaufGhafooretal.2016, author = {Ud-Din, Aziz and Rauf, Mamoona and Ghafoor, S. and Khattak, M. N. K. and Hameed, M. W. and Shah, H. and Jan, S. and Muhammad, K. and Rehman, A. and Inamullah,}, title = {Efficient use of artificial micro-RNA to downregulate the expression of genes at the post-transcriptional level in Arabidopsis thaliana}, series = {Genetics and molecular research}, volume = {15}, journal = {Genetics and molecular research}, publisher = {FUNPEC}, address = {Ribeirao Preto}, issn = {1676-5680}, doi = {10.4238/gmr.15027439}, pages = {11}, year = {2016}, abstract = {Micro-RNAs are cellular components regulating gene expression at the post-transcription level. In the present study, artificial micro-RNAs were used to decrease the transcript level of two genes, AtExpA8 (encoding an expansin) and AHL25 (encoding an AT-hook motif nuclear localized protein) in Arabidopsis thaliana. The backbone of the Arabidopsis endogenous MIR319a micro-RNA was used in a site-directed mutagenesis approach for the generation of artificial micro-RNAs targeting two genes. The recombinant cassettes were expressed under the control of the CaMV 35S promoter in individual A. thaliana plants. Transgenic lines of the third generation were tested by isolating total RNA and by subsequent cDNA synthesis using oligo-dT18 primers and mRNAs as templates. The expression of the two target genes was checked through quantitative realtime polymerase chain reaction to confirm reduced transcript levels for AtExpA8 and AHL25. Downregulation of AtExpA8 resulted in the formation of short hypocotyls compared with those of the wild-type control in response to low pH and high salt concentration. This technology could be used to prevent the expression of exogenous and invading genes posing a threat to the normal cellular physiology of the host plant.}, language = {en} }