@article{Tu2014, author = {Tu, Rui}, title = {Fast determination of displacement by PPP velocity estimation}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt480}, pages = {1397 -- 1401}, year = {2014}, abstract = {Global Positioning System (GPS) has been proven to be an effective tool to retrieve high-precision displacement for the natural hazard monitoring. The network positioning and Precise Point Positioning (PPP) are the two basic approaches for its data solution, but the former one can only get a relative displacement within the local reference frame and requires a complex and continuously linked infrastructure, and the latter one with a long convergence time to obtain the absolute displacements within the global reference frame. To overcome these drawbacks, this paper proposed a method of fast determining the displacement by PPP velocity estimation (PPPVE). The key of the approach is that the velocity vector parameters are not correlated with other unknown parameters, such as ambiguities and atmosphere, so they can be fast and accurately estimated and integrated into displacements. The validation shows that the displacement can be provided with a precision of 1-2 cm in 1 min by PPPVE. In additional, the Kalman smoothing estimation can be used to improve the PPP solution.}, language = {en} }