@article{BaudischSilberKommanaetal.2019, author = {Baudisch, Patrick Markus and Silber, Arthur and Kommana, Yannis and Gruner, Milan and Wall, Ludwig and Reuss, Kevin and Heilman, Lukas and Kovacs, Robert and Rechlitz, Daniel and Roumen, Thijs}, title = {Kyub}, series = {Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems}, journal = {Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5970-2}, doi = {10.1145/3290605.3300796}, pages = {1 -- 12}, year = {2019}, abstract = {We present an interactive editing system for laser cutting called kyub. Kyub allows users to create models efficiently in 3D, which it then unfolds into the 2D plates laser cutters expect. Unlike earlier systems, such as FlatFitFab, kyub affords construction based on closed box structures, which allows users to turn very thin material, such as 4mm plywood, into objects capable of withstanding large forces, such as chairs users can actually sit on. To afford such sturdy construction, every kyub project begins with a simple finger-joint "boxel"-a structure we found to be capable of withstanding over 500kg of load. Users then extend their model by attaching additional boxels. Boxels merge automatically, resulting in larger, yet equally strong structures. While the concept of stacking boxels allows kyub to offer the strong affordance and ease of use of a voxel-based editor, boxels are not confined to a grid and readily combine with kuyb's various geometry deformation tools. In our technical evaluation, objects built with kyub withstood hundreds of kilograms of loads. In our user study, non-engineers rated the learnability of kyub 6.1/7.}, language = {en} } @phdthesis{Roumen2023, author = {Roumen, Thijs}, title = {Portable models for laser cutting}, doi = {10.25932/publishup-57814}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578141}, school = {Universit{\"a}t Potsdam}, pages = {xx, 170}, year = {2023}, abstract = {Laser cutting is a fast and precise fabrication process. This makes laser cutting a powerful process in custom industrial production. Since the patents on the original technology started to expire, a growing community of tech-enthusiasts embraced the technology and started sharing the models they fabricate online. Surprisingly, the shared models appear to largely be one-offs (e.g., they proudly showcase what a single person can make in one afternoon). For laser cutting to become a relevant mainstream phenomenon (as opposed to the current tech enthusiasts and industry users), it is crucial to enable users to reproduce models made by more experienced modelers, and to build on the work of others instead of creating one-offs. We create a technological basis that allows users to build on the work of others—a progression that is currently held back by the use of exchange formats that disregard mechanical differences between machines and therefore overlook implications with respect to how well parts fit together mechanically (aka engineering fit). For the field to progress, we need a machine-independent sharing infrastructure. In this thesis, we outline three approaches that together get us closer to this: (1) 2D cutting plans that are tolerant to machine variations. Our initial take is a minimally invasive approach: replacing machine-specific elements in cutting plans with more tolerant elements using mechanical hacks like springs and wedges. The resulting models fabricate on any consumer laser cutter and in a range of materials. (2) sharing models in 3D. To allow building on the work of others, we build a 3D modeling environment for laser cutting (kyub). After users design a model, they export their 3D models to 2D cutting plans optimized for the machine and material at hand. We extend this volumetric environment with tools to edit individual plates, allowing users to leverage the efficiency of volumetric editing while having control over the most detailed elements in laser-cutting (plates) (3) converting legacy 2D cutting plans to 3D models. To handle legacy models, we build software to interactively reconstruct 3D models from 2D cutting plans. This allows users to reuse the models in more productive ways. We revisit this by automating the assembly process for a large subset of models. The above-mentioned software composes a larger system (kyub, 140,000 lines of code). This system integration enables the push towards actual use, which we demonstrate through a range of workshops where users build complex models such as fully functional guitars. By simplifying sharing and re-use and the resulting increase in model complexity, this line of work forms a small step to enable personal fabrication to scale past the maker phenomenon, towards a mainstream phenomenon—the same way that other fields, such as print (postscript) and ultimately computing itself (portable programming languages, etc.) reached mass adoption.}, language = {en} } @misc{SchneiderShigeyamaKovacsetal.2018, author = {Schneider, Oliver and Shigeyama, Jotaro and Kovacs, Robert and Roumen, Thijs Jan and Marwecki, Sebastian and B{\"o}ckhoff, Nico and Gl{\"o}ckner, Daniel Amadeus Johannes and Bounama, Jonas and Baudisch, Patrick}, title = {DualPanto}, series = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, journal = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5948-1}, doi = {10.1145/3242587.3242604}, pages = {877 -- 887}, year = {2018}, abstract = {We present a new haptic device that enables blind users to continuously track the absolute position of moving objects in spatial virtual environments, as is the case in sports or shooter games. Users interact with DualPanto by operating the me handle with one hand and by holding on to the it handle with the other hand. Each handle is connected to a pantograph haptic input/output device. The key feature is that the two handles are spatially registered with respect to each other. When guiding their avatar through a virtual world using the me handle, spatial registration enables users to track moving objects by having the device guide the output hand. This allows blind players of a 1-on-1 soccer game to race for the ball or evade an opponent; it allows blind players of a shooter game to aim at an opponent and dodge shots. In our user study, blind participants reported very high enjoyment when using the device to play (6.5/7).}, language = {en} } @misc{RoumenShigeyamaRudolphetal.2019, author = {Roumen, Thijs and Shigeyama, Jotaro and Rudolph, Julius Cosmo Romeo and Grzelka, Felix and Baudisch, Patrick}, title = {SpringFit}, series = {User Interface Software and Technology}, journal = {User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6816-2}, doi = {10.1145/3332165.3347930}, pages = {727 -- 738}, year = {2019}, abstract = {Joints are crucial to laser cutting as they allow making three-dimensional objects; mounts are crucial because they allow embedding technical components, such as motors. Unfortunately, mounts and joints tend to fail when trying to fabricate a model on a different laser cutter or from a different material. The reason for this lies in the way mounts and joints hold objects in place, which is by forcing them into slightly smaller openings. Such "press fit" mechanisms unfortunately are susceptible to the small changes in diameter that occur when switching to a machine that removes more or less material ("kerf"), as well as to changes in stiffness, as they occur when switching to a different material. We present a software tool called springFit that resolves this problem by replacing the problematic press fit-based mounts and joints with what we call cantilever-based mounts and joints. A cantilever spring is simply a long thin piece of material that pushes against the object to be held. Unlike press fits, cantilever springs are robust against variations in kerf and material; they can even handle very high variations, simply by using longer springs. SpringFit converts models in the form of 2D cutting plans by replacing all contained mounts, notch joints, finger joints, and t-joints. In our technical evaluation, we used springFit to convert 14 models downloaded from the web.}, language = {en} } @book{AdrianoBleifussChengetal.2019, author = {Adriano, Christian and Bleifuß, Tobias and Cheng, Lung-Pan and Diba, Kiarash and Fricke, Andreas and Grapentin, Andreas and Jiang, Lan and Kovacs, Robert and Krejca, Martin Stefan and Mandal, Sankalita and Marwecki, Sebastian and Matthies, Christoph and Mattis, Toni and Niephaus, Fabio and Pirl, Lukas and Quinzan, Francesco and Ramson, Stefan and Rezaei, Mina and Risch, Julian and Rothenberger, Ralf and Roumen, Thijs and Stojanovic, Vladeta and Wolf, Johannes}, title = {Technical report}, number = {129}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick and Friedrich, Tobias and B{\"o}ttinger, Erwin and Lippert, Christoph}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-465-4}, issn = {1613-5652}, doi = {10.25932/publishup-42753}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427535}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 267}, year = {2019}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.}, language = {en} }