@article{ZellmeierBrennerJanietzetal.2018, author = {Zellmeier, M. and Brenner, Thomas J. K. and Janietz, Silvia and Nickel, N. H. and Rappich, J.}, title = {Polythiophenes as emitter layers for crystalline silicon solar cells}, series = {Journal of applied physics}, volume = {123}, journal = {Journal of applied physics}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.5006625}, pages = {5}, year = {2018}, abstract = {We investigated the influence of the emitter (amorphous-Si, a-Si, or polythiophene derivatives: poly(3-hexylthiophene), P3HT, and poly(3-[3,6-dioxaheptyl]-thiophene), P3DOT) and the interface passivation (intrinsic a-Si or SiOX and methyl groups or SiOX) on the c-Si based 1 × 1 cm2 planar hybrid heterojunction solar cell parameters. We observed higher short circuit currents for the P3HT or P3DOT/c-Si solar cells than those obtained for a-Si/c-Si devices, independent of the interface passivation. The obtained VOC of 659 mV for the P3DOT/SiOX/c-Si heterojunction solar cell with hydrophilic 3,6-dioxaheptyl side chains is among the highest reported for c-Si/polythiophene devices. The maximum power conversion efficiency, PCE, was 11\% for the P3DOT/SiOX/c-Si heterojunction solar cell. Additionally, our wafer lifetime measurements reveal a field effect passivation in the wafer induced by the polythiophenes when deposited on c-Si.}, language = {en} } @article{RappichHartigNickeletal.2005, author = {Rappich, J. and Hartig, P. and Nickel, N. H. and Sieber, I. and Schulze, S. and Dittrich, T.}, title = {Stable electrochemically passivated Si surfaces by ultra thin benzene-type layers}, issn = {0167-9317}, year = {2005}, abstract = {Ultra thin organic layers of benzene-type molecules are able to passivate Si surfaces. The organic layers were electrochemically deposited on Si surfaces from aqueous solution of diazonium compounds and show a blocking of the charge transfer from Si into the electrolyte after the deposition process. Electron microscopic images reveal a compact and homogeneous organic layer of 4-bromobenzene on the Si. The surface recombination increases only slightly with respect to a well H-passivated Si surface, so that the interface state density is about 10(11) cm(2) or slightly below. Organic layer modified Si surfaces are much longer stable in ambient air than the H-terminated surface as observed by a slower decay of the integrated photoluminescence intensity with time. Thermal desorption measurements show that the organic layer is stable up to about 200 degrees C.}, language = {en} }