@article{PuhlmannHenkelHeueretal.2016, author = {Puhlmann, Dirk and Henkel, Carsten and Heuer, Axel and Pieplow, Gregor and Menzel, Ralf}, title = {Characterization of a remote optical element with bi-photons}, series = {Physica scripta : an international journal for experimental and theoretical physics}, volume = {91}, journal = {Physica scripta : an international journal for experimental and theoretical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0031-8949}, doi = {10.1088/0031-8949/91/2/023006}, pages = {113 -- 114}, year = {2016}, abstract = {We present a simple setup that exploits the interference of entangled photon pairs. 'Signal' photons are sent through a Mach-Zehnder-like interferometer, while 'idlers' are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.}, language = {en} } @article{ElsnerPuhlmannPieplowetal.2015, author = {Elsner, Robert and Puhlmann, Dirk and Pieplow, Gregor and Heuer, Axel and Menzel, Ralf}, title = {Transverse distinguishability of entangled photons with arbitrarily shaped spatial near- and far-field distributions}, series = {Journal of the Optical Society of America : B, Optical physics}, volume = {32}, journal = {Journal of the Optical Society of America : B, Optical physics}, number = {9}, publisher = {Optical Society of America}, address = {Washington}, issn = {0740-3224}, doi = {10.1364/JOSAB.32.001910}, pages = {1910 -- 1919}, year = {2015}, abstract = {Entangled photons generated by spontaneous parametric downconversion are ubiquitous in quantum optics. In general, they exhibit a complex spatial photon count distribution. This spatial structure is responsible for seemingly surprising results concerning, e.g., complementarity such as the apparent simultaneous observation of interference fringes V and which-way information D at a double slit, as recently reported by Menzel et al. [Proc. Natl. Acad. Sci. USA 109, 9314 (2012)]. We implement a complete quantitative model of the SPDC interaction that fully incorporates the effects of crystal anisotropies, phase matching, and the pump beam structure and allows for arbitrary manipulations of the SPDC light in the near and far fields. This enables us to establish an upper bound D-2 + V-2 <= 1.47 for the experimental parameters reported by Menzel et al. We report new experimental results that agree excellently with these theoretical predictions. The new model enables a detailed quantitative analysis of this surprising result and the fair sampling interpretation of biphotons passing a double slit. (C) 2015 Optical Society of America}, language = {en} }