@article{ZhouPanZhangetal.2020, author = {Zhou, Suqiong and Pan, Yuanwei and Zhang, Jianguang and Li, Yan and Neumann, Falko and Schwerdtle, Tanja and Li, Wenzhong and Haag, Rainer}, title = {Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells}, series = {Nanoscale}, volume = {12}, journal = {Nanoscale}, number = {47}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/d0nr06570f}, pages = {24006 -- 24019}, year = {2020}, abstract = {Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate.}, language = {en} } @article{RadbruchPischonOstrowskietal.2017, author = {Radbruch, Moritz and Pischon, Hannah and Ostrowski, Anja and Volz, Pierre and Brodwolf, Robert and Neumann, Falko and Unbehauen, Michael and Kleuser, Burkhard and Haag, Rainer and Ma, Nan and Alexiev, Ulrike and Mundhenk, Lars and Gruber, Achim D.}, title = {Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin}, series = {Nanoscale Research Letters}, volume = {12}, journal = {Nanoscale Research Letters}, number = {64}, publisher = {Springer}, address = {New York}, issn = {1556-276X}, doi = {10.1186/s11671-017-1835-0}, pages = {12}, year = {2017}, abstract = {Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.}, language = {en} } @misc{CostardStadieRitteretal.2011, author = {Costard, Sylvia and Stadie, Nicole and Ritter, Christiane and Moll, Kristina and Landerl, Karin and Kohnen, Saskia and Kentner, Gerrit and Bethmann, Anja and Scheich, Henning and Brechmann, Andr{\´e} and De Kok, D{\"o}rte and Berger, Frauke and Sticher, Heike and Czepluch, Christine and M{\"a}tzener, Flurina and Wilmes, Stefanie and Hadert, Sandra and Frank, Ulrike and M{\"a}der, Mark and Westermann, Antje and Meinusch, Miriam and Neumann, Sandra and D{\"u}sterh{\"o}ft, Stefanie and Posse, Dorothea and Puritz, Caroline and Seidl, Rainer Ottis and Etzien, Maria and Machleb, Franziska and Lorenz, Antje and H{\"o}ger, Maria and Schr{\"o}der, Astrid and Busch, Tobias and Heide, Judith and Tagoe, Tanja and Watermeyer, Melanie and H{\"o}hle, Barbara and Kauschke, Christina}, title = {Spektrum Patholinguistik = Schwerpunktthema: Lesen lernen: Diagnostik und Therapie bei St{\"o}rungen des Leseerwerbs}, number = {4}, editor = {Hanne, Sandra and Fritzsche, Tom and Ott, Susan and Adelt, Anne}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, organization = {Verband f{\"u}r Patholinguistik e. V. (vpl)}, isbn = {978-3-86956-145-5}, issn = {1869-3822}, doi = {10.25932/publishup-5155}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53146}, year = {2011}, abstract = {Am 20. November 2010 fand an der Universit{\"a}t Potsdam das 4. Herbsttreffen Patholinguistik statt. Die Konferenzreihe wird regelm{\"a}ßig seit 2007 vom Verband f{\"u}r Patholinguistik e.V. (vpl) durchgef{\"u}hrt. Der vorliegende Tagungsband ver{\"o}ffentlicht die Hauptvortr{\"a}ge des Herbsttreffens zum Thema "Lesen lernen: Diagnostik und Therapie bei St{\"o}rungen des Leseerwerbs". Des Weiteren sind die Beitr{\"a}ge promovierender bzw. promovierter PatholinguistInnen sowie der Posterpr{\"a}sentationen enthalten.}, language = {de} } @article{BeckerNeumannTetzneretal.2014, author = {Becker, Michael and Neumann, Marko and Tetzner, Julia and B{\"o}se, Susanne and Knoppick, Henrike and Maaz, Kai and Baumert, J{\"u}rgen and Lehmann, Rainer}, title = {Development? Effects of the transition into academically selective schools}, series = {The journal of educational psychology}, volume = {106}, journal = {The journal of educational psychology}, number = {2}, publisher = {American Psychological Association}, address = {Washington}, issn = {0022-0663}, doi = {10.1037/a0035425}, pages = {555 -- 568}, year = {2014}, abstract = {The present study investigates school context effects on psychosocial characteristics (academic self-concept, peer relations, school satisfaction, and school anxiety) of high-achieving and gifted students. Students who did or did not make an early transition from elementary to secondary schools for high-achieving and gifted students in 5th grade in Berlin, Germany, are compared in their psychosocial development. The sample comprises 155 early-entry students who moved to an academically selective secondary school (Gymnasium) and 3,169 regular students who remained in elementary school until the end of 6th grade. Overall, a complex pattern of psychosocial development emerged for all students, with both positive and negative outcomes being observed. Specifically, the transition into academically selective learning environments seemed to come at some cost for psychosocial development. Propensity score matching analysis isolating the effects of selective school intake and the school context effect itself revealed negative contextual effects of early transition to Gymnasium on academic self-concept and school anxiety; additionally, the positive trend in peer relations observed among regular students was not discernible among early-entry students.}, language = {en} } @article{ZuelickeRagnettiNeumannetal.1996, author = {Z{\"u}licke, Lutz and Ragnetti, Francesca and Neumann, Rainer and Zuhrt, Christian}, title = {Ionized Van-der-Waals systems : structure and interactions}, series = {Technical Report / Institute of Physical and Theoretical Chemistry, Potsdam}, volume = {1996, 01}, journal = {Technical Report / Institute of Physical and Theoretical Chemistry, Potsdam}, publisher = {Univ.}, address = {Potsdam}, pages = {46 S.}, year = {1996}, language = {en} } @article{LiMillerWuestnecketal.1995, author = {Li, Junbai and Miller, Reinhard and W{\"u}stneck, Rainer and M{\"o}hwald, Helmuth and Neumann, A. W.}, title = {News of pendant drop technique as a film balance at liquid/liquid interfaces}, year = {1995}, language = {en} } @article{ZuelickeRagnettiNeumann1997, author = {Z{\"u}licke, Lutz and Ragnetti, Francesca and Neumann, Rainer}, title = {Ionized Van-der-Waals systems : structure and interactions}, year = {1997}, language = {en} } @article{MillerLiWuestnecketal.1995, author = {Miller, Reinhard and Li, Junbai and W{\"u}stneck, Rainer and Kr{\"a}gel, J{\"u}rgen and Clark, David C. and Neumann, Wilhelm A.}, title = {Pendant drop technique for studies of dynamic properties of soluble adsorption layers and insoluble monolayers}, year = {1995}, language = {en} } @article{ZuhrtNeumannZuelicke1999, author = {Zuhrt, Christian and Neumann, Rainer and Z{\"u}licke, Lutz}, title = {Investigation of vibrational states of the ArHCl+ cation in the electronic ground state}, year = {1999}, language = {en} } @misc{RadbruchPischonOstrowskietal.2017, author = {Radbruch, Moritz and Pischon, Hannah and Ostrowski, Anja and Volz, Pierre and Brodwolf, Robert and Neumann, Falko and Unbehauen, Michael and Kleuser, Burkhard and Haag, Rainer and Ma, Nan and Alexiev, Ulrike and Mundhenk, Lars and Gruber, Achim D.}, title = {Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {724}, issn = {1866-8372}, doi = {10.25932/publishup-43013}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430136}, pages = {12}, year = {2017}, abstract = {Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.}, language = {en} }