@article{ZhouPanZhangetal.2020, author = {Zhou, Suqiong and Pan, Yuanwei and Zhang, Jianguang and Li, Yan and Neumann, Falko and Schwerdtle, Tanja and Li, Wenzhong and Haag, Rainer}, title = {Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells}, series = {Nanoscale}, volume = {12}, journal = {Nanoscale}, number = {47}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/d0nr06570f}, pages = {24006 -- 24019}, year = {2020}, abstract = {Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate.}, language = {en} } @article{LiSchlaichKulkaetal.2019, author = {Li, Mingjun and Schlaich, Christoph and Kulka, Michael Willem and Donskyi, Ievgen S. and Schwerdtle, Tanja and Unger, Wolfgang E. S. and Haag, Rainer}, title = {Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion}, series = {Journal of materials chemistry : B, Materials for biology and medicine}, volume = {7}, journal = {Journal of materials chemistry : B, Materials for biology and medicine}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-750X}, doi = {10.1039/c9tb00534j}, pages = {3438 -- 3445}, year = {2019}, abstract = {Over the last few decades, there has been a tremendous increase in research on antibacterial surface coatings as an alternative strategy against bacterial infections. Although there are several examples of effective strategies to prevent bacterial adhesion, the effect of the wetting properties on the coating was rarely considered as a crucial factor. Here we report an in-depth study on the effect of extreme wettability on the antibacterial efficiency of a silver nanoparticles ( AgNPs)-based coating. By controlling surface polymerization of mussel-inspired dendritic polyglycerol ( MI-dPG) and post-functionalization, surfaces with wetting properties ranging from superhydrophilic to superhydrophobic were fabricated. Subsequently, AgNPs were embedded into the coatings by applying in situ reduction using the free catechols-moieties present in the MI-dPG coating. The resulting polymer coatings exhibited excellent antibacterial ability against planktonic Escherichia coli ( E. coli) DH5a and Staphylococcus aureus ( S. aureus) SH1000. The antibacterial efficiency of the coatings was analyzed by using inductively coupled plasma mass spectrometry ( ICP-MS) and bacterial viability tests. Furthermore, the antifouling properties of the coatings in relation to the antibacterial properties were evaluated.}, language = {en} } @article{LiGaoSchlaichetal.2017, author = {Li, Mingjun and Gao, Lingyan and Schlaich, Christoph and Zhang, Jianguang and Donskyi, Ievgen S. and Yu, Guozhi and Li, Wenzhong and Tu, Zhaoxu and Rolff, Jens and Schwerdtle, Tanja and Haag, Rainer and Ma, Nan}, title = {Construction of Functional Coatings with Durable and Broad-Spectrum Antibacterial Potential Based on Mussel-Inspired Dendritic Polyglycerol and in Situ-Formed Copper Nanoparticles}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b10541}, pages = {35411 -- 35418}, year = {2017}, abstract = {A novel surface coating with durable broad-spectrum antibacterial ability was prepared based on mussel inspired dendritic polyglycerol (MI-dPG) embedded with copper nanoparticles (Cu NPs). The functional surface coating is fabricated via a facile dip-coating process followed by in situ reduction of copper ions with a MI-dPG coating to introduce Cu NPs into the coating matrix. This coating has been demonstrated to possess efficient long-term antibacterial properties against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and kanamycin-resistant E. coli through an "attract-kill-release" strategy. The synergistic antibacterial activity of the coating was shown by the combination of two functions of the contact killing, reactive oxygen species production and Cu ions released from the coating. Furthermore, this coating inhibited biofilm formation and showed good compatibility to eukaryotic cells. Thus, this newly developed Cu NP-incorporated MI-dPG surface coating may find potential application in the design of antimicrobial coating, such as implantable devices.}, language = {en} } @article{PanMaLiuetal.2021, author = {Pan, Yuanwei and Ma, Xuehua and Liu, Chuang and Xing, Jie and Zhou, Suqiong and Parshad, Badri and Schwerdtle, Tanja and Li, Wenzhong and Wu, Aiguo and Haag, Rainer}, title = {Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells}, series = {ACS nano}, volume = {15}, journal = {ACS nano}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.1c05452}, pages = {15069 -- 15084}, year = {2021}, abstract = {The existence of cancer stem cells (CSCs) poses a major obstacle for the success of current cancer therapies, especially the fact that non-CSCs can spontaneously turn into CSCs, which lead to the failure of the treatment and tumor relapse. Therefore, it is very important to develop effective strategies for the eradication of the CSCs. In this work, we have developed a CSCs-specific targeted, retinoic acid (RA)-loaded gold nanostars-dendritic polyglycerol (GNSs-dPG) nanoplatform for the efficient eradication of CSCs. The nanocomposites possess good biocompatibility and exhibit effective CSCs-specific multivalent targeted capability due to hyaluronic acid (HA) decorated on the multiple attachment sites of the bioinert dendritic polyglycerol (dPG). With the help of CSCs differentiation induced by RA, the self-renewal of breast CSCs and tumor growth were suppressed by the high therapeutic efficacy of photothermal therapy (PTT) in a synergistic inhibitory manner. Moreover, the stemness gene expression and CSC-driven tumorsphere formation were significantly diminished. In addition, the in vivo tumor growth and CSCs were also effectively eliminated, which indicated superior anticancer activity, effective CSCs suppression, and prevention of relapse. Taken together, we developed a CSCs-specific targeted, RA-loaded GNSs-dPG nanoplatform for the targeted eradication of CSCs and for preventing the relapse.}, language = {en} }