@article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bechtol, K. C. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brez, A. and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Cannon, A. and Caraveo, P. A. and Carrigan, Svenja and Casandjian, J. M. and Cavazzuti, E. and Cecchi, C. and Celik, O. and Charles, E. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Cutini, S. and Dermer, C. D. and de Palma, F. and do Couto e Silva, E. and Drell, P. S. and Dubois, R. and Dumora, D. and Favuzzi, C. and Fegan, S. J. and Ferrara, E. C. and Focke, W. B. and Fortin, P. and Frailis, M. and Fuhrmann, L. and Fukazawa, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Guillemot, L. and Guiriec, S. and Hayashida, M. and Hays, E. and Horan, D. and Hughes, R. E. and Johannesson, G. and Johnson, A. S. and Johnson, W. N. and Kadler, M. and Kamae, T. and Katagiri, H. and Kataoka, J. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lott, B. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Max-Moerbeck, W. and Mazziotta, Mario Nicola and McEnery, J. E. and Mehault, J. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nishino, S. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Omodei, N. and Orlando, E. and Ormes, J. F. and Paneque, D. and Panetta, J. H. and Parent, D. and Pavlidou, V. and Pearson, T. J. and Pelassa, V. and Pepe, M. and Pesce-Rollins, M. and Piron, F. and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Readhead, A. and Reimer, A. and Reimer, O. and Richards, J. L. and Ripken, J. and Ritz, S. and Roth, M. and Sadrozinski, H. F. -W. and Sanchez, D. and Sander, A. and Scargle, J. D. and Sgro, C. and Siskind, E. J. and Smith, P. D. and Spandre, G. and Spinelli, P. and Stawarz, L. and Stevenson, M. and Strickman, M. S. and Sokolovsky, K. V. and Suson, D. J. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. B. and Thayer, J. G. and Thompson, D. J. and Tibaldo, L. and Torres, F. and Tosti, G. and Tramacere, A. and Uchiyama, Y. and Usher, T. L. and Vandenbroucke, J. and Vasileiou, V. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Wehrle, A. E. and Winer, B. L. and Wood, K. S. and Yang, Z. and Ylinen, T. and Zensus, J. A. and Ziegler, M. and Aleksic, J. and Antonelli, L. A. and Antoranz, P. and Backes, Michael and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Berdyugin, A. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Boller, A. and Bonnoli, G. and Bordas, Pol and Tridon, D. Borla and Bosch-Ramon, Valentin and Bose, D. and Braun, I. and Bretz, T. and Camara, M. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Dazzi, F. and de Angelis, A. and del Pozo, E. De Cea and De Lotto, B. and De Maria, M. and De Sabata, F. and Mendez, C. Delgado and Ortega, A. Diago and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Elsaesser, D. and Ferenc, D. and Fonseca, M. V. and Font, L. and Lopen, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giavitto, G. and Godinovi, N. and Hadasch, D. and Herrero, A. and Hildebrand, D. and Hoehne-Moench, D. and Hose, J. and Hrupec, D. and Jogler, T. and Klepser, S. and Kraehenbuehl, T. and Kranich, D. and Krause, J. and La Barbera, A. and Leonardo, E. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lorenz, E. and Majumdar, P. and Makariev, E. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Miyamoto, H. and Moldon, J. and Moralejo, A. and Nieto, D. and Nilsson, K. and Orito, R. and Oya, I. and Paoletti, R. and Paredes, J. M. and Partini, S. and Pasanen, M. and Pauss, F. and Pegna, R. G. and Perez-Torres, M. A. and Persic, M. and Peruzzo, J. and Pochon, J. and Moroni, P. G. Prada and Prada, F. and Prandini, E. and Puchades, N. and Puljak, I. and Reichardt, T. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Rissi, M. and Ruegamer, S. and Saggion, A. and Saito, K. and Saito, T. Y. and Salvati, M. and Sanchez-Conde, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shayduk, M. and Shore, S. N. and Sierpowska-Bartosik, A. and Sillanpaa, A. and Sitarek, J. and Sobczynska, D. and Spanier, F. and Spiro, S. and Stamerra, A. and Steinke, B. and Storz, J. and Strah, N. and Struebig, J. C. and Suric, T. and Takalo, L. O. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Vankov, H. and Wagner, R. M. and Weitzel, Q. and Zabalza, V. and Zandanel, F. and Zanin, R. and Acciari, V. A. and Arlen, T. and Aune, T. and Benbow, W. and Boltuch, D. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Cui, W. and Dickherber, R. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huang, D. and Hui, C. M. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Konopelko, A. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Ong, R. and Otte, N. and Pandel, D. and Perkins, J. S. and Pichel, A. and Pohl, M. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Rovero, A. C. and Schroedter, M. and Sembroski, G. H. and Senturk, G. D. and Steele, D. and Swordy, S. P. and Tesic, G. and Theiling, M. and Thibadeau, S. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Wood, M. and Zitzer, B. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Arkharov, A. A. and Blinov, D. A. and Calcidese, P. and Chen, W. P. and Efimova, N. V. and Kimeridze, G. and Konstantinova, T. S. and Kopatskaya, E. N. and Koptelova, E. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Larionov, V. M. and Larionova, E. G. and Larionova, L. V. and Ligustri, R. and Morozova, D. A. and Nikolashvili, M. G. and Sigua, L. A. and Troitsky, I. S. and Angelakis, E. and Capalbi, M. and Carraminana, A. and Carrasco, L. and Cassaro, P. and de la Fuente, E. and Gurwell, M. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Krichbaum, T. P. and Krimm, H. A. and Leto, Paolo and Lister, M. L. and Maccaferri, G. and Moody, J. W. and Mori, Y. and Nestoras, I. and Orlati, A. and Pagani, C. and Pace, C. and Pearson, R. and Perri, M. and Piner, B. G. and Pushkarev, A. B. and Ros, E. and Sadun, A. C. and Sakamoto, T. and Tornikoski, M. and Yatsu, Y. and Zook, A.}, title = {Insights into the high-energy gamma-Ray emission of markarian 501 fromextensive multifrequency observations in the fermi era}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {727}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {Fermi-LAT Collaboration, MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/727/2/129}, pages = {26}, year = {2011}, abstract = {We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.}, language = {en} } @article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Caraveo, P. A. and Casandjian, J. M. and Cecchi, C. and Chaty, S. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Cillis, A. N. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Corbel, S. and Cutini, S. and de Angelis, A. and de Palma, F. and Dermer, C. D. and Digel, S. W. and do Couto e Silva, E. and Drell, P. S. and Drlica-Wagner, A. and Dubois, R. and Dumora, D. and Favuzzi, C. and Ferrara, E. C. and Fortin, P. and Frailis, M. and Fukazawa, Y. and Fukui, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Grondin, M. -H. and Guiriec, S. and Hadasch, D. and Hanabata, Y. and Harding, A. K. and Hayashida, M. and Hayashi, K. and Hays, E. and Horan, D. and Jackson, M. S. and Johannesson, G. and Johnson, A. S. and Kamae, T. and Katagiri, H. and Kataoka, J. and Kerr, M. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mignani, R. P. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Orlando, E. and Ormes, J. F. and Paneque, D. and Parent, D. and Pelassa, V. and Pesce-Rollins, M. and Pierbattista, M. and Piron, F. and Pohl, Martin and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Reimer, O. and Reposeur, T. and Ritz, S. and Romani, R. W. and Roth, M. and Sadrozinski, H. F. -W. and Parkinson, P. M. Saz and Sgro, C. and Smith, D. A. and Smith, P. D. and Spandre, G. and Spinelli, P. and Strickman, M. S. and Tajima, H. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. G. and Thayer, J. B. and Thompson, D. J. and Tibaldo, L. and Tibolla, O. and Torres, D. F. and Tosti, G. and Tramacere, A. and Troja, E. and Uchiyama, Y. and Vandenbroucke, J. and Vasileiou, V. and Vianello, G. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Winer, B. L. and Wood, K. S. and Yamamoto, H. and Yamazaki, R. and Yang, Z. and Ziegler, M.}, title = {Observations of the young supernova remnant RX J1713.7-3946 with the fermi large area telescope}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {734}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/734/1/28}, pages = {9}, year = {2011}, abstract = {We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0 degrees.55 +/- 0 degrees.04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of Gamma = 1.5 +/- 0.1 that coincides in normalization with the steeper H. E. S. S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.}, language = {en} } @article{ArchambaultAuneBeheraetal.2014, author = {Archambault, S. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Biteau, Jonathan and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, Wei and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, Daniel and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Ackermann, Margit and Ajello, M. and Albert, A. and Baldini, L. and Bastieri, D. and Bellazzini, R. and Bissaldi, E. and Bregeon, Johan and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Caraveo, P. A. and Cavazzuti, E. and Charles, E. and Chiang, J. and Ciprini, S. and Claus, R. and Cutini, S. and de Angelis, A. and de Palma, F. and Dermer, C. D. and Digel, S. W. and Di Venere, L. and Drell, P. S. and Favuzzi, C. and Franckowiak, A. and Fusco, P. and Gargano, F. and Gasparrini, D. and Giglietto, N. and Giordano, F. and Giroletti, M. and Grenier, I. A. and Guiriec, S. and Jogler, T. and Kuss, M. and Larsson, S. and Latronico, L. and Longo, F. and Loparco, F. and Lubrano, P. and Madejski, G. M. and Mayer, M. and Mazziotta, Mario Nicola and Michelson, P. F. and Mizuno, T. and Monzani, M. E. and Morselli, Aldo and Murgia, S. and Nuss, E. and Ohsugi, T. and Ormes, J. F. and Paneque, D. and Perkins, J. S. and Piron, F. and Pivato, G. and Raino, S. and Razzano, M. and Reimer, A. and Reimer, Olaf and Ritz, S. and Schaal, M. and Sgro, C. and Siskind, E. J. and Spinelli, P. and Takahashi, H. and Tibaldo, L. and Tinivella, M. and Troja, E. and Vianello, G. and Werner, M. and Wood, M.}, title = {Deep broadband observations of the distant gamma-ray blazar PKS 1424+240}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {785}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration, Fermi LAT Collaboration}, issn = {2041-8205}, doi = {10.1088/2041-8205/785/1/L16}, pages = {8}, year = {2014}, abstract = {We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope, and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of z >= 0.6035, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hr of VERITAS observations over three years, a multiwavelength light curve, and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1 +/- 0.3) x 10(-7) photons m(-2) s(-1) above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02 +/- 0.08) x 10-7 photons m(-2) s(-1) above 120 GeV. The measured differential very high energy (VHE; E >= 100 GeV) spectral indices are Gamma = 3.8 +/- 0.3, 4.3 +/- 0.6 and 4.5 +/- 0.2 in 2009, 2011, and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than tau = 2, where it is postulated that any variability would be small and occur on timescales longer than a year if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.}, language = {en} } @article{AckermannAjelloAllafortetal.2011, author = {Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Bastieri, D. and Belfiore, A. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bottacini, E. and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Caraveo, P. A. and Casandjian, J. M. and Cecchi, C. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and de Angelis, A. and de Palma, F. and Dermer, C. D. and do Couto e Silva, E. and Drell, P. S. and Dumora, D. and Favuzzi, C. and Fegan, S. J. and Focke, W. B. and Fortin, P. and Fukazawa, Y. and Fusco, P. and Gargano, F. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Guillemot, L. and Guiriec, S. and Hadasch, D. and Hanabata, Y. and Harding, A. K. and Hayashida, M. and Hayashi, K. and Hays, E. and Johannesson, G. and Johnson, A. S. and Kamae, T. and Katagiri, H. and Kataoka, J. and Kerr, M. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Longo, F. and Loparco, F. and Lott, B. and Lovellette, M. N. and Lubrano, P. and Martin, P. and Mazziotta, Mario Nicola and McEnery, J. E. and Mehault, J. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, T. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Orlando, E. and Ormes, J. F. and Ozaki, M. and Paneque, D. and Parent, D. and Pesce-Rollins, M. and Pierbattista, M. and Piron, F. and Pohl, Martin and Prokhorov, D. and Raino, S. and Rando, R. and Razzano, M. and Reposeur, T. and Ritz, S. and Parkinson, P. M. Saz and Sgro, C. and Siskind, E. J. and Smith, P. D. and Spinelli, P. and Strong, A. W. and Takahashi, H. and Tanaka, T. and Thayer, J. G. and Thayer, J. B. and Thompson, D. J. and Tibaldo, L. and Torres, D. F. and Tosti, G. and Tramacere, A. and Troja, E. and Uchiyama, Y. and Vandenbroucke, J. and Vasileiou, V. and Vianello, G. and Vitale, V. and Waite, A. P. and Wang, P. and Winer, B. L. and Wood, K. S. and Yang, Z. and Zimmer, S. and Bontemps, S.}, title = {A cocoon of freshly accelerated cosmic rays detected by fermi in the cygnus superbubble}, series = {Science}, volume = {334}, journal = {Science}, number = {6059}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1210311}, pages = {1103 -- 1107}, year = {2011}, abstract = {The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.}, language = {en} } @article{BerrahSanchezGonzalezJureketal.2019, author = {Berrah, N. and S{\´a}nchez-Gonz{\´a}lez, {\´A}lvaro and Jurek, Zoltan and Obaid, Razib and Xiong, H. and Squibb, R. J. and Osipov, T. and Lutman, A. and Fang, L. and Barillot, T. and Bozek, J. D. and Cryan, J. and Wolf, T. J. A. and Rolles, Daniel and Coffee, R. and Schnorr, Kirsten and Augustin, S. and Fukuzawa, Hironobu and Motomura, K. and Niebuhr, Nina Isabelle and Frasinski, L. J. and Feifel, Raimund and Schulz, Claus-Peter and Toyota, Kenji and Son, Sang-Kil and Ueda, K. and Pfeifer, T. and Marangos, J. P. and Santra, Robin}, title = {Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization}, series = {Nature physics}, volume = {15}, journal = {Nature physics}, number = {12}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, doi = {10.1038/s41567-019-0665-7}, pages = {1279 -- 1301}, year = {2019}, abstract = {X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C-60), exposed to 640 eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20 fs) X-ray pump pulse, the fragmentation of C-60 is considerably delayed. This work uncovers the persistence of the molecular structure of C-60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules.}, language = {en} } @article{TaalStPourcainThieringetal.2012, author = {Taal, H. Rob and St Pourcain, Beate and Thiering, Elisabeth and Das, Shikta and Mook-Kanamori, Dennis O. and Warrington, Nicole M. and Kaakinen, Marika and Kreiner-Moller, Eskil and Bradfield, Jonathan P. and Freathy, Rachel M. and Geller, Frank and Guxens, Monica and Cousminer, Diana L. and Kerkhof, Marjan and Timpson, Nicholas J. and Ikram, M. Arfan and Beilin, Lawrence J. and Bonnelykke, Klaus and Buxton, Jessica L. and Charoen, Pimphen and Chawes, Bo Lund Krogsgaard and Eriksson, Johan and Evans, David M. and Hofman, Albert and Kemp, John P. and Kim, Cecilia E. and Klopp, Norman and Lahti, Jari and Lye, Stephen J. and McMahon, George and Mentch, Frank D. and Mueller-Nurasyid, Martina and O'Reilly, Paul F. and Prokopenko, Inga and Rivadeneira, Fernando and Steegers, Eric A. P. and Sunyer, Jordi and Tiesler, Carla and Yaghootkar, Hanieh and Breteler, Monique M. B. and Debette, Stephanie and Fornage, Myriam and Gudnason, Vilmundur and Launer, Lenore J. and van der Lugt, Aad and Mosley, Thomas H. and Seshadri, Sudha and Smith, Albert V. and Vernooij, Meike W. and Blakemore, Alexandra I. F. and Chiavacci, Rosetta M. and Feenstra, Bjarke and Fernandez-Banet, Julio and Grant, Struan F. A. and Hartikainen, Anna-Liisa and van der Heijden, Albert J. and Iniguez, Carmen and Lathrop, Mark and McArdle, Wendy L. and Molgaard, Anne and Newnham, John P. and Palmer, Lyle J. and Palotie, Aarno and Pouta, Annneli and Ring, Susan M. and Sovio, Ulla and Standl, Marie and Uitterlinden, Andre G. and Wichmann, H-Erich and Vissing, Nadja Hawwa and DeCarli, Charles and van Duijn, Cornelia M. and McCarthy, Mark I. and Koppelman, Gerard H. and Estivill, Xavier and Hattersley, Andrew T. and Melbye, Mads and Bisgaard, Hans and Pennell, Craig E. and Widen, Elisabeth and Hakonarson, Hakon and Smith, George Davey and Heinrich, Joachim and Jarvelin, Marjo-Riitta and Jaddoe, Vincent W. V. and Adair, Linda S. and Ang, Wei and Atalay, Mustafa and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Davis, Oliver S. P. and Elliott, Paul and Evans, David M. and Feenstra, Bjarke and Flexeder, Claudia and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Geller, Frank and Groen-Blokhuis, Maria and Goh, Liang-Kee and Guxens, Monica and Haworth, Claire M. A. and Hadley, Dexter and Hebebrand, Johannes and Hinney, Anke and Hirschhorn, Joel N. and Holloway, John W. and Holst, Claus and Hottenga, Jouke Jan and Horikoshi, Momoko and Huikari, Ville and Hypponen, Elina and Iniguez, Carmen and Kaakinen, Marika and Kilpelainen, Tuomas O. and Kirin, Mirna and Kowgier, Matthew and Lakka, Hanna-Maaria and Lange, Leslie A. and Lawlor, Debbie A. and Lehtimaki, Terho and Lewin, Alex and Lindgren, Cecilia and Lindi, Virpi and Maggi, Reedik and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Murray, Jeffrey C. and Nivard, Michel and Nohr, Ellen Aagaard and Ntalla, Ioanna and Oken, Emily and O'Reilly, Paul F. and Palmer, Lyle J. and Panoutsopoulou, Kalliope and Pararajasingham, Jennifer and Prokopenko, Inga and Rodriguez, Alina and Salem, Rany M. and Sebert, Sylvain and Siitonen, Niina and Sovio, Ulla and St Pourcain, Beate and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Teo, Yik-Ying and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Zeggini, Eleftheria and Boomsma, Dorret I. and Cooper, Cyrus and Estivill, Xavier and Gillman, Matthew and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Hocher, Berthold and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Lakka, Timo A. and McCarthy, Mark I. and Melbye, Mads and Mohlke, Karen L. and Dedoussis, George V. and Ong, Ken K. and Pearson, Ewan R. and Pennell, Craig E. and Price, Thomas S. and Power, Chris and Raitakari, Olli T. and Saw, Seang-Mei and Scherag, Andre and Simell, Olli and Sorensen, Thorkild I. A. and Timpson, Nicholas J. and Widen, Elisabeth and Wilson, James F. and Ang, Wei and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Elliott, Paul and Evans, David M. and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Groen-Blokhuis, Maria and Guxens, Monica and Hadley, Dexter and Hottenga, Jouke Jan and Huikari, Ville and Hypponen, Elina and Kaakinen, Marika and Kowgier, Matthew and Lawlor, Debbie A. and Lewin, Alex and Lindgren, Cecilia and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Nivard, Michel and O'Reilly, Paul F. and Palmer, Lyle J. and Prokopenko, Inga and Rodriguez, Alina and Sebert, Sylvain and Sovio, Ulla and St Pourcain, Beate and Standl, Marie and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Boomsma, Dorret I. and Estivill, Xavier and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and McCarthy, Mark I. and Pennell, Craig E. and Power, Chris and Timpson, Nicholas J. and Widen, Elisabeth and Ikram, M. Arfan and Fornage, Myriam and Smith, Albert V. and Seshadri, Sudha and Schmidt, Reinhold and Debette, Stephanie and Vrooman, Henri A. and Sigurdsson, Sigurdur and Ropele, Stefan and Coker, Laura H. and Longstreth, W. T. and Niessen, Wiro J. and DeStefano, Anita L. and Beiser, Alexa and Zijdenbos, Alex P. and Struchalin, Maksim and Jack, Clifford R. and Nalls, Mike A. and Au, Rhoda and Hofman, Albert and Gudnason, Haukur and van der Lugt, Aad and Harris, Tamara B. and Meeks, William M. and Vernooij, Meike W. and van Buchem, Mark A. and Catellier, Diane and Gudnason, Vilmundur and Windham, B. Gwen and Wolf, Philip A. and van Duijn, Cornelia M. and Mosley, Thomas H. and Schmidt, Helena and Launer, Lenore J. and Breteler, Monique M. B. and DeCarli, Charles}, title = {Common variants at 12q15 and 12q24 are associated with infant head circumference}, series = {Nature genetics}, volume = {44}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Cohorts Heart Aging Res Genetic Ep, Early Genetics Lifecourse Epidemio, Early Growth Genetics EGG Consorti}, issn = {1061-4036}, doi = {10.1038/ng.2238}, pages = {532 -- +}, year = {2012}, abstract = {To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.}, language = {en} } @article{IkramFornageSmithetal.2012, author = {Ikram, M. Arfan and Fornage, Myriam and Smith, Albert V. and Seshadri, Sudha and Schmidt, Reinhold and Debette, Stephanie and Vrooman, Henri A. and Sigurdsson, Sigurdur and Ropele, Stefan and Taal, H. Rob and Mook-Kanamori, Dennis O. and Coker, Laura H. and Longstreth, W. T. and Niessen, Wiro J. and DeStefano, Anita L. and Beiser, Alexa and Zijdenbos, Alex P. and Struchalin, Maksim and Jack, Clifford R. and Rivadeneira, Fernando and Uitterlinden, Andre G. and Knopman, David S. and Hartikainen, Anna-Liisa and Pennell, Craig E. and Thiering, Elisabeth and Steegers, Eric A. P. and Hakonarson, Hakon and Heinrich, Joachim and Palmer, Lyle J. and Jarvelin, Marjo-Riitta and McCarthy, Mark I. and Grant, Struan F. A. and St Pourcain, Beate and Timpson, Nicholas J. and Smith, George Davey and Sovio, Ulla and Nalls, Mike A. and Au, Rhoda and Hofman, Albert and Gudnason, Haukur and van der Lugt, Aad and Harris, Tamara B. and Meeks, William M. and Vernooij, Meike W. and van Buchem, Mark A. and Catellier, Diane and Jaddoe, Vincent W. V. and Gudnason, Vilmundur and Windham, B. Gwen and Wolf, Philip A. and van Duijn, Cornelia M. and Mosley, Thomas H. and Schmidt, Helena and Launer, Lenore J. and Breteler, Monique M. B. and DeCarli, Charles and Adair, Linda S. and Ang, Wei and Atalay, Mustafa and vanBeijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Coin, Lachlan and Davis, Oliver S. P. and Elliott, Paul and Flexeder, Claudia and Frayling, Tim and Gaillard, Romy and Groen-Blokhuis, Maria and Goh, Liang-Kee and Haworth, Claire M. A. and Hadley, Dexter and Hebebrand, Johannes and Hinney, Anke and Hirschhorn, Joel N. and Holloway, John W. and Holst, Claus and Hottenga, Jouke Jan and Horikoshi, Momoko and Huikari, Ville and Hypponen, Elina and Kilpelainen, Tuomas O. and Kirin, Mirna and Kowgier, Matthew and Lakka, Hanna-Maaria and Lange, Leslie A. and Lawlor, Debbie A. and Lehtimaki, Terho and Lewin, Alex and Lindgren, Cecilia and Lindi, Virpi and Maggi, Reedik and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Murray, Jeffrey C. and Nivard, Michel and Nohr, Ellen Aagaard and Ntalla, Ioanna and Oken, Emily and Panoutsopoulou, Kalliope and Pararajasingham, Jennifer and Rodriguez, Alina and Salem, Rany M. and Sebert, Sylvain and Siitonen, Niina and Strachan, David P. and Teo, Yik-Ying and Valcarcel, Beatriz and Willemsen, Gonneke and Zeggini, Eleftheria and Boomsma, Dorret I. and Cooper, Cyrus and Gillman, Matthew and Hocher, Berthold and Lakka, Timo A. and Mohlke, Karen L. and Dedoussis, George V. and Ong, Ken K. and Pearson, Ewan R. and Price, Thomas S. and Power, Chris and Raitakari, Olli T. and Saw, Seang-Mei and Scherag, Andre and Simell, Olli and Sorensen, Thorkild I. A. and Wilson, James F.}, title = {Common variants at 6q22 and 17q21 are associated with intracranial volume}, series = {Nature genetics}, volume = {44}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Early Growth Genetics EGG Consorti, Cohorts Heart Aging Res Genomic Ep}, issn = {1061-4036}, doi = {10.1038/ng.2245}, pages = {539 -- +}, year = {2012}, abstract = {During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.}, language = {en} } @article{HenkelGaertnerDornetal.2011, author = {Henkel, Janin and G{\"a}rtner, Daniela and Dorn, Christoph and Hellerbrand, Claus and Schanze, Nancy and Elz, Sheila R. and P{\"u}schel, Gerhard Paul}, title = {Oncostatin M produced in Kupffer cells in response to PGE(2) possible contributor to hepatic insulin resistance and steatosis}, series = {Laboratory investigation : the basic and translational pathology research journal ; an official journal of the United States and Canadian Academy of Pathology}, volume = {91}, journal = {Laboratory investigation : the basic and translational pathology research journal ; an official journal of the United States and Canadian Academy of Pathology}, number = {7}, publisher = {Nature Publ. Group}, address = {New York}, issn = {0023-6837}, doi = {10.1038/labinvest.2011.47}, pages = {1107 -- 1117}, year = {2011}, abstract = {Hepatic insulin resistance is a major contributor to hyperglycemia in metabolic syndrome and type II diabetes. It is caused in part by the low-grade inflammation that accompanies both diseases, leading to elevated local and circulating levels of cytokines and cyclooxygenase (COX) products such as prostaglandin E-2 (PGE(2)). In a recent study, PGE(2) produced in Kupffer cells attenuated insulin-dependent glucose utilization by interrupting the intracellular signal chain downstream of the insulin receptor in hepatocytes. In addition to directly affecting insulin signaling in hepatocytes, PGE(2) in the liver might affect insulin resistance by modulating cytokine production in non-parenchymal cells. In accordance with this hypothesis, PGE(2) stimulated oncostatin M (OSM) production by Kupffer cells. OSM in turn attenuated insulin-dependent Akt activation and, as a downstream target, glucokinase induction in hepatocytes, most likely by inducing suppressor of cytokine signaling 3 (SOCS3). In addition, it inhibited the expression of key enzymes of hepatic lipid metabolism. COX-2 and OSM mRNA were induced early in the course of the development of non-alcoholic steatohepatitis (NASH) in mice. Thus, induction of OSM production in Kupffer cells by an autocrine PGE(2)-dependent feed-forward loop may be an additional, thus far unrecognized, mechanism contributing to hepatic insulin resistance and the development of NASH.}, language = {en} } @article{BorkDarchowSchatzetal.1997, author = {Bork, Hans-Rudolf and Darchow, Claus and Schatz, Thomas and Freilinghaus, Monika and H{\"o}hn, Axel and Schmidt, R.}, title = {The Soil and Sediment Profile B{\"a}ckerweg in the Natural Reserve "M{\"a}rkische Schweiz", east-Brandenburg, Germany}, year = {1997}, language = {en} } @article{StanislasHuserBarbosaetal.2015, author = {Stanislas, Thomas and Huser, Anke and Barbosa, Ines C. R. and Kiefer, Christian S. and Brackmann, Klaus and Pietra, Stefano and Gustavsson, Anna and Zourelidou, Melina and Schwechheimer, Claus and Grebe, Markus}, title = {Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity}, series = {Nature plants}, volume = {1}, journal = {Nature plants}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {2055-026X}, doi = {10.1038/NPLANTS.2015.162}, pages = {9}, year = {2015}, abstract = {Development of diverse multicellular organisms relies on coordination of single-cell polarities within the plane of the tissue layer (planar polarity). Cell polarity often involves plasma membrane heterogeneity generated by accumulation of specific lipids and proteins into membrane subdomains. Coordinated hair positioning along Arabidopsis root epidermal cells provides a planar polarity model in plants, but knowledge about the functions of proteo-lipid domains in planar polarity signalling remains limited. Here we show that Rho-of-plant (ROP) 2 and 6, phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3), DYNAMIN-RELATED PROTEIN (DRP) 1A and DRP2B accumulate in a sterol-enriched, polar membrane domain during root hair initiation. DRP1A, DRP2B, PIP5K3 and sterols are required for planar polarity and the AGCVIII kinase D6 PROTEIN KINASE (D6PK) is a modulator of this process. D6PK undergoes phosphatidylinositol-4,5-bisphosphate- and sterol-dependent basal-to-planar polarity switching into the polar, lipid-enriched domain just before hair formation, unravelling lipid-dependent D6PK localization during late planar polarity signalling.}, language = {en} }