@article{AliuArchambaultArlenetal.2013, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bird, R. and Boettcher, Markus and Bouvier, A. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Multiwavelenght observations and modeling of 1ES 1959+650 in a low flux state}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {775}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/775/1/3}, pages = {8}, year = {2013}, abstract = {We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (sigma) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan gamma-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of less than or similar to 2 in the high energy (E > 1MeV) and very high energy (E > 100 GeV) gamma-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Decerprit, G. and Dickherber, R. and Duke, C. and Dumm, J. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nunez, P. D. and Ong, R. A. and Orr, M. and Otte, A. N. and Pandel, D. and Park, N. and Perkins, J. S. and Pohl, M. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vincent, S. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Veritas observations of the nova in V407 CYGNI}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {754}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/754/1/77}, pages = {7}, year = {2012}, abstract = {We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1-10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imaging Telescope Array System during 2010 March 19-26 at relatively large zenith angles due to the position of V407 Cyg. An improved reconstruction technique for large zenith angle observations is presented and used to analyze the data. We do not detect V407 Cygni and place a differential upper limit on the flux at 1.6 TeV of 2.3 x 10(-12) erg cm(-2) s(-1) (at the 95\% confidence level). When considered jointly with data from Fermi-LAT, this result places limits on the acceleration of very high energy particles in the nova.}, language = {en} } @article{TaalStPourcainThieringetal.2012, author = {Taal, H. Rob and St Pourcain, Beate and Thiering, Elisabeth and Das, Shikta and Mook-Kanamori, Dennis O. and Warrington, Nicole M. and Kaakinen, Marika and Kreiner-Moller, Eskil and Bradfield, Jonathan P. and Freathy, Rachel M. and Geller, Frank and Guxens, Monica and Cousminer, Diana L. and Kerkhof, Marjan and Timpson, Nicholas J. and Ikram, M. Arfan and Beilin, Lawrence J. and Bonnelykke, Klaus and Buxton, Jessica L. and Charoen, Pimphen and Chawes, Bo Lund Krogsgaard and Eriksson, Johan and Evans, David M. and Hofman, Albert and Kemp, John P. and Kim, Cecilia E. and Klopp, Norman and Lahti, Jari and Lye, Stephen J. and McMahon, George and Mentch, Frank D. and Mueller-Nurasyid, Martina and O'Reilly, Paul F. and Prokopenko, Inga and Rivadeneira, Fernando and Steegers, Eric A. P. and Sunyer, Jordi and Tiesler, Carla and Yaghootkar, Hanieh and Breteler, Monique M. B. and Debette, Stephanie and Fornage, Myriam and Gudnason, Vilmundur and Launer, Lenore J. and van der Lugt, Aad and Mosley, Thomas H. and Seshadri, Sudha and Smith, Albert V. and Vernooij, Meike W. and Blakemore, Alexandra I. F. and Chiavacci, Rosetta M. and Feenstra, Bjarke and Fernandez-Banet, Julio and Grant, Struan F. A. and Hartikainen, Anna-Liisa and van der Heijden, Albert J. and Iniguez, Carmen and Lathrop, Mark and McArdle, Wendy L. and Molgaard, Anne and Newnham, John P. and Palmer, Lyle J. and Palotie, Aarno and Pouta, Annneli and Ring, Susan M. and Sovio, Ulla and Standl, Marie and Uitterlinden, Andre G. and Wichmann, H-Erich and Vissing, Nadja Hawwa and DeCarli, Charles and van Duijn, Cornelia M. and McCarthy, Mark I. and Koppelman, Gerard H. and Estivill, Xavier and Hattersley, Andrew T. and Melbye, Mads and Bisgaard, Hans and Pennell, Craig E. and Widen, Elisabeth and Hakonarson, Hakon and Smith, George Davey and Heinrich, Joachim and Jarvelin, Marjo-Riitta and Jaddoe, Vincent W. V. and Adair, Linda S. and Ang, Wei and Atalay, Mustafa and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Davis, Oliver S. P. and Elliott, Paul and Evans, David M. and Feenstra, Bjarke and Flexeder, Claudia and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Geller, Frank and Groen-Blokhuis, Maria and Goh, Liang-Kee and Guxens, Monica and Haworth, Claire M. A. and Hadley, Dexter and Hebebrand, Johannes and Hinney, Anke and Hirschhorn, Joel N. and Holloway, John W. and Holst, Claus and Hottenga, Jouke Jan and Horikoshi, Momoko and Huikari, Ville and Hypponen, Elina and Iniguez, Carmen and Kaakinen, Marika and Kilpelainen, Tuomas O. and Kirin, Mirna and Kowgier, Matthew and Lakka, Hanna-Maaria and Lange, Leslie A. and Lawlor, Debbie A. and Lehtimaki, Terho and Lewin, Alex and Lindgren, Cecilia and Lindi, Virpi and Maggi, Reedik and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Murray, Jeffrey C. and Nivard, Michel and Nohr, Ellen Aagaard and Ntalla, Ioanna and Oken, Emily and O'Reilly, Paul F. and Palmer, Lyle J. and Panoutsopoulou, Kalliope and Pararajasingham, Jennifer and Prokopenko, Inga and Rodriguez, Alina and Salem, Rany M. and Sebert, Sylvain and Siitonen, Niina and Sovio, Ulla and St Pourcain, Beate and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Teo, Yik-Ying and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Zeggini, Eleftheria and Boomsma, Dorret I. and Cooper, Cyrus and Estivill, Xavier and Gillman, Matthew and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Hocher, Berthold and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Lakka, Timo A. and McCarthy, Mark I. and Melbye, Mads and Mohlke, Karen L. and Dedoussis, George V. and Ong, Ken K. and Pearson, Ewan R. and Pennell, Craig E. and Price, Thomas S. and Power, Chris and Raitakari, Olli T. and Saw, Seang-Mei and Scherag, Andre and Simell, Olli and Sorensen, Thorkild I. A. and Timpson, Nicholas J. and Widen, Elisabeth and Wilson, James F. and Ang, Wei and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Elliott, Paul and Evans, David M. and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Groen-Blokhuis, Maria and Guxens, Monica and Hadley, Dexter and Hottenga, Jouke Jan and Huikari, Ville and Hypponen, Elina and Kaakinen, Marika and Kowgier, Matthew and Lawlor, Debbie A. and Lewin, Alex and Lindgren, Cecilia and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Nivard, Michel and O'Reilly, Paul F. and Palmer, Lyle J. and Prokopenko, Inga and Rodriguez, Alina and Sebert, Sylvain and Sovio, Ulla and St Pourcain, Beate and Standl, Marie and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Boomsma, Dorret I. and Estivill, Xavier and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and McCarthy, Mark I. and Pennell, Craig E. and Power, Chris and Timpson, Nicholas J. and Widen, Elisabeth and Ikram, M. Arfan and Fornage, Myriam and Smith, Albert V. and Seshadri, Sudha and Schmidt, Reinhold and Debette, Stephanie and Vrooman, Henri A. and Sigurdsson, Sigurdur and Ropele, Stefan and Coker, Laura H. and Longstreth, W. T. and Niessen, Wiro J. and DeStefano, Anita L. and Beiser, Alexa and Zijdenbos, Alex P. and Struchalin, Maksim and Jack, Clifford R. and Nalls, Mike A. and Au, Rhoda and Hofman, Albert and Gudnason, Haukur and van der Lugt, Aad and Harris, Tamara B. and Meeks, William M. and Vernooij, Meike W. and van Buchem, Mark A. and Catellier, Diane and Gudnason, Vilmundur and Windham, B. Gwen and Wolf, Philip A. and van Duijn, Cornelia M. and Mosley, Thomas H. and Schmidt, Helena and Launer, Lenore J. and Breteler, Monique M. B. and DeCarli, Charles}, title = {Common variants at 12q15 and 12q24 are associated with infant head circumference}, series = {Nature genetics}, volume = {44}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Cohorts Heart Aging Res Genetic Ep, Early Genetics Lifecourse Epidemio, Early Growth Genetics EGG Consorti}, issn = {1061-4036}, doi = {10.1038/ng.2238}, pages = {532 -- +}, year = {2012}, abstract = {To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.}, language = {en} } @article{IkramFornageSmithetal.2012, author = {Ikram, M. Arfan and Fornage, Myriam and Smith, Albert V. and Seshadri, Sudha and Schmidt, Reinhold and Debette, Stephanie and Vrooman, Henri A. and Sigurdsson, Sigurdur and Ropele, Stefan and Taal, H. Rob and Mook-Kanamori, Dennis O. and Coker, Laura H. and Longstreth, W. T. and Niessen, Wiro J. and DeStefano, Anita L. and Beiser, Alexa and Zijdenbos, Alex P. and Struchalin, Maksim and Jack, Clifford R. and Rivadeneira, Fernando and Uitterlinden, Andre G. and Knopman, David S. and Hartikainen, Anna-Liisa and Pennell, Craig E. and Thiering, Elisabeth and Steegers, Eric A. P. and Hakonarson, Hakon and Heinrich, Joachim and Palmer, Lyle J. and Jarvelin, Marjo-Riitta and McCarthy, Mark I. and Grant, Struan F. A. and St Pourcain, Beate and Timpson, Nicholas J. and Smith, George Davey and Sovio, Ulla and Nalls, Mike A. and Au, Rhoda and Hofman, Albert and Gudnason, Haukur and van der Lugt, Aad and Harris, Tamara B. and Meeks, William M. and Vernooij, Meike W. and van Buchem, Mark A. and Catellier, Diane and Jaddoe, Vincent W. V. and Gudnason, Vilmundur and Windham, B. Gwen and Wolf, Philip A. and van Duijn, Cornelia M. and Mosley, Thomas H. and Schmidt, Helena and Launer, Lenore J. and Breteler, Monique M. B. and DeCarli, Charles and Adair, Linda S. and Ang, Wei and Atalay, Mustafa and vanBeijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Coin, Lachlan and Davis, Oliver S. P. and Elliott, Paul and Flexeder, Claudia and Frayling, Tim and Gaillard, Romy and Groen-Blokhuis, Maria and Goh, Liang-Kee and Haworth, Claire M. A. and Hadley, Dexter and Hebebrand, Johannes and Hinney, Anke and Hirschhorn, Joel N. and Holloway, John W. and Holst, Claus and Hottenga, Jouke Jan and Horikoshi, Momoko and Huikari, Ville and Hypponen, Elina and Kilpelainen, Tuomas O. and Kirin, Mirna and Kowgier, Matthew and Lakka, Hanna-Maaria and Lange, Leslie A. and Lawlor, Debbie A. and Lehtimaki, Terho and Lewin, Alex and Lindgren, Cecilia and Lindi, Virpi and Maggi, Reedik and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Murray, Jeffrey C. and Nivard, Michel and Nohr, Ellen Aagaard and Ntalla, Ioanna and Oken, Emily and Panoutsopoulou, Kalliope and Pararajasingham, Jennifer and Rodriguez, Alina and Salem, Rany M. and Sebert, Sylvain and Siitonen, Niina and Strachan, David P. and Teo, Yik-Ying and Valcarcel, Beatriz and Willemsen, Gonneke and Zeggini, Eleftheria and Boomsma, Dorret I. and Cooper, Cyrus and Gillman, Matthew and Hocher, Berthold and Lakka, Timo A. and Mohlke, Karen L. and Dedoussis, George V. and Ong, Ken K. and Pearson, Ewan R. and Price, Thomas S. and Power, Chris and Raitakari, Olli T. and Saw, Seang-Mei and Scherag, Andre and Simell, Olli and Sorensen, Thorkild I. A. and Wilson, James F.}, title = {Common variants at 6q22 and 17q21 are associated with intracranial volume}, series = {Nature genetics}, volume = {44}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Early Growth Genetics EGG Consorti, Cohorts Heart Aging Res Genomic Ep}, issn = {1061-4036}, doi = {10.1038/ng.2245}, pages = {539 -- +}, year = {2012}, abstract = {During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and LeBohec, S. and Lee, K. and Lyutikov, M. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, M. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Schr{\"o}dter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vincent, S. and Vivier, M. and Wagner, R. G. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Kondratiev, V.}, title = {SEARCH FOR A CORRELATION BETWEEN VERY-HIGH-ENERGY GAMMA RAYS AND GIANT RADIO PULSES IN THE CRAB PULSAR}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {760}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/760/2/136}, pages = {13}, year = {2012}, abstract = {We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays (E-gamma > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On similar to 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Stefania and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Imran, A. and Jameil, O. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kerr, J. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Quinn, J. and Ragan, K. and Reynolds, P. T. and Roache, E. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Stroh, M. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Multiwavelength observations of the AGN 1ES 0414+009 with veritas, FERMI-LAT, SWIFT-XRT, AND MDM}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {755}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/755/2/118}, pages = {7}, year = {2012}, abstract = {We present observations of the BL Lac object 1ES 0414+009 in the >200 GeV gamma-ray band by the VERITAS array of Cherenkov telescopes. 1ES 0414+009 was observed by VERITAS between 2008 January and 2011 February, resulting in 56.2 hr of good quality pointed observations. These observations resulted in a detection of 822 events from the source corresponding to a statistical significance of 6.4 standard deviations (6.4 sigma) above the background. The source flux, showing no evidence for variability, is measured as (5.2 +/- 1.1(stat) +/- 2.6(sys)) x 10(-12) photons cm(-2) s(-1) above 200 GeV, equivalent to approximately 2\% of the Crab Nebula flux above this energy. The differential photon spectrum from 230 GeV to 850 GeV is well fit by a power law with a photon index of Gamma = 3.4 +/- 0.5(stat) +/- 0.3(sys) and a flux normalization of (1.6 +/- 0.3(stat) +/- 0.8(sys)) x 10(-11) photons cm(-2) s(-1) at 300 GeV. We also present multiwavelength results taken in the optical (MDM), x-ray (Swift-XRT), and GeV (Fermi-LAT) bands and use these results to construct a broadband spectral energy distribution (SED). Modeling of this SED indicates that homogenous one-zone leptonic scenarios are not adequate to describe emission from the system, with a lepto-hadronic model providing a better fit to the data.}, language = {en} } @article{ArlenAuneBeilickeetal.2012, author = {Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Imran, A. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Pfrommer, C. and Pinzke, A.}, title = {Constraints on cosmic rays, magnetic fields, and dark matter fromgamma-ray observations of the coma cluster of galaxies with veritas and fermi}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {757}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/757/2/123}, pages = {14}, year = {2012}, abstract = {Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99\% confidence level were measured to be on the order of (2-5) x 10(-8) photonsm(-2) s(-1) (VERITAS, >220 GeV) and similar to 2 x 10(-6) photonsm(-2) s(-1) (Fermi, 1-3GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be < 16\% from VERITAS data and <1.7\% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50\%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of similar to(2-5.5) mu G, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, .}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Kaaret, P. and Karlsson, N. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Sembroski, G. H. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Fortin, P. and Horan, D. and Fumagalli, M. and Kaplan, K. and Prochaska, J. X.}, title = {Veritas observations of six bright, hard-spectrum fermi-lat blazars}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {759}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/759/2/102}, pages = {13}, year = {2012}, abstract = {We report on VERITAS very high energy (VHE; E >= 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate-and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Coppi, P. and Cui, W. and Decerprit, G. and Dickherber, R. and Dumm, J. and Errando, Manel and Falcone, A. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Hawkins, K. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Orr, M. and Otte, A. N. and Palma, N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B. and Fortin, P. and Horan, D.}, title = {Disovery of high-energy and very high energy gamma-ray emission from the blazar RBS 0413}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {750}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/750/2/94}, pages = {6}, year = {2012}, abstract = {We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) gamma-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based gamma-ray observatory, detected VHE. rays from RBS 0413 with a statistical significance of 5.5 standard deviations (sigma) and a gamma-ray flux of (1.5 +/- 0.6(stat) +/- 0.7(syst)) x 10(-8) photons m(-2) s(-1) (similar to 1\% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 +/- 0.68(stat) +/- 0.30(syst). Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE gamma rays from RBS 0413 with a (stat)istical significance of more than 9 sigma, a power-law photon index of 1.57 +/- 0.12(stat-0.12sys')(+0.11) and a gamma-ray flux between 300 MeV and 300 GeV of (1.64 +/- 0.43(stat-0.22sys)(+ 0.31)) x 10(-5) photons m(-2) s(-1). We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the gamma-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.}, language = {en} } @article{AliuArlenAuneetal.2012, author = {Aliu, E. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Humensky, T. B. and Imran, A. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and LeBohec, S. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nunez, P. D. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Skole, C. and Staszak, D. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B.}, title = {Veritas observations of day-scale flaring of M 87 in 2010 April}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {746}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/746/2/141}, pages = {7}, year = {2012}, abstract = {VERITAS has been monitoring the very-high-energy (VHE; > 100 GeV) gamma-ray activity of the radio galaxy M87 since 2007. During 2008, flaring activity on a timescale of a few days was observed with a peak flux of (0.70 +/- 0.16) x 10(-11) cm(-2) s(-1) at energies above 350 GeV. In 2010 April, VERITAS detected a flare from M 87 with peak flux of (2.71 +/- 0.68) x 10(-11) cm(-2) s(-1) for E > 350 GeV. The source was observed for six consecutive nights during the flare, resulting in a total of 21 hr of good-quality data. The most rapid flux variation occurred on the trailing edge of the flare with an exponential flux decay time of 0.90(-0.15)(+0.22) days. The shortest detected exponential rise time is three times as long, at 2.87(+1.65)(-0.99) days. The quality of the data sample is such that spectral analysis can be performed for three periods: rising flux, peak flux, and falling flux. The spectra obtained are consistent with power-law forms. The spectral index at the peak of the flare is equal to 2.19 +/- 0.07. There is some indication that the spectrum is softer in the falling phase of the flare than the peak phase, with a confidence level corresponding to 3.6 standard deviations. We discuss the implications of these results for the acceleration and cooling rates of VHE electrons in M 87 and the constraints they provide on the physical size of the emitting region.}, language = {en} }