@article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, X. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Hutten, M. and Hakansson, N. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Fegan, S. and Giebels, B. and Horan, D. and Berdyugin, A. and Kuan, J. and Lindfors, E. and Nilsson, K. and Oksanen, A. and Prokoph, H. and Reinthal, R. and Takalo, L. and Zefi, F.}, title = {A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration;Fermi-LAT Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/2/205}, pages = {6}, year = {2017}, abstract = {B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2. 1215+30 during routine monitoring observations of the blazar 1ES. 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of <3.6 hr. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. When interpreted in the framework of a onezone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor delta > 10, and an electron population with spectral index p < 2.3.}, language = {en} } @article{ArchambaultAuneBeheraetal.2014, author = {Archambault, S. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Biteau, Jonathan and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, Wei and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, Daniel and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Ackermann, Margit and Ajello, M. and Albert, A. and Baldini, L. and Bastieri, D. and Bellazzini, R. and Bissaldi, E. and Bregeon, Johan and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Caraveo, P. A. and Cavazzuti, E. and Charles, E. and Chiang, J. and Ciprini, S. and Claus, R. and Cutini, S. and de Angelis, A. and de Palma, F. and Dermer, C. D. and Digel, S. W. and Di Venere, L. and Drell, P. S. and Favuzzi, C. and Franckowiak, A. and Fusco, P. and Gargano, F. and Gasparrini, D. and Giglietto, N. and Giordano, F. and Giroletti, M. and Grenier, I. A. and Guiriec, S. and Jogler, T. and Kuss, M. and Larsson, S. and Latronico, L. and Longo, F. and Loparco, F. and Lubrano, P. and Madejski, G. M. and Mayer, M. and Mazziotta, Mario Nicola and Michelson, P. F. and Mizuno, T. and Monzani, M. E. and Morselli, Aldo and Murgia, S. and Nuss, E. and Ohsugi, T. and Ormes, J. F. and Paneque, D. and Perkins, J. S. and Piron, F. and Pivato, G. and Raino, S. and Razzano, M. and Reimer, A. and Reimer, Olaf and Ritz, S. and Schaal, M. and Sgro, C. and Siskind, E. J. and Spinelli, P. and Takahashi, H. and Tibaldo, L. and Tinivella, M. and Troja, E. and Vianello, G. and Werner, M. and Wood, M.}, title = {Deep broadband observations of the distant gamma-ray blazar PKS 1424+240}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {785}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration, Fermi LAT Collaboration}, issn = {2041-8205}, doi = {10.1088/2041-8205/785/1/L16}, pages = {8}, year = {2014}, abstract = {We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope, and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of z >= 0.6035, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hr of VERITAS observations over three years, a multiwavelength light curve, and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1 +/- 0.3) x 10(-7) photons m(-2) s(-1) above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02 +/- 0.08) x 10-7 photons m(-2) s(-1) above 120 GeV. The measured differential very high energy (VHE; E >= 100 GeV) spectral indices are Gamma = 3.8 +/- 0.3, 4.3 +/- 0.6 and 4.5 +/- 0.2 in 2009, 2011, and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than tau = 2, where it is postulated that any variability would be small and occur on timescales longer than a year if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.}, language = {en} } @article{ArchambaultArlenAuneetal.2013, author = {Archambault, S. and Arlen, T. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and de Bhroithe, A. O'Faolain and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Saxon, D. B. and Sembroski, G. H. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Boettcher, Markus and Fegan, S. J. and Fortin, P. and Halpern, J. P. and Kovalev, Y. Y. and Lister, M. L. and Liu, J. and Pushkarev, A. B. and Smith, P. S.}, title = {Discovery of a new tev Gamma-Ray source - VER J0521+211}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {776}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/776/2/69}, pages = {10}, year = {2013}, abstract = {We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 +/- 0.13(stat) +/- 0.78(sys)) x 10(-11) cm(-2) s(-1) above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to similar to 0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Coppi, P. and Cui, W. and Decerprit, G. and Dickherber, R. and Dumm, J. and Errando, Manel and Falcone, A. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Hawkins, K. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Orr, M. and Otte, A. N. and Palma, N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B. and Fortin, P. and Horan, D.}, title = {Disovery of high-energy and very high energy gamma-ray emission from the blazar RBS 0413}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {750}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/750/2/94}, pages = {6}, year = {2012}, abstract = {We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) gamma-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based gamma-ray observatory, detected VHE. rays from RBS 0413 with a statistical significance of 5.5 standard deviations (sigma) and a gamma-ray flux of (1.5 +/- 0.6(stat) +/- 0.7(syst)) x 10(-8) photons m(-2) s(-1) (similar to 1\% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 +/- 0.68(stat) +/- 0.30(syst). Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE gamma rays from RBS 0413 with a (stat)istical significance of more than 9 sigma, a power-law photon index of 1.57 +/- 0.12(stat-0.12sys')(+0.11) and a gamma-ray flux between 300 MeV and 300 GeV of (1.64 +/- 0.43(stat-0.22sys)(+ 0.31)) x 10(-5) photons m(-2) s(-1). We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the gamma-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V and Cui, Wei and Danie, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huttens, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Nieto, Daniel and Ong, R. A. and Otte, A. N. and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynold, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Brisken, W. F. and Pontrelli, P.}, title = {HESS J1943+213}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {862}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aacbd0}, pages = {15}, year = {2018}, abstract = {HESS J1943+213 is a very high energy (VHE; > 100 GeV) gamma-ray source in the direction of the Galactic plane. Studies exploring the classification of the source are converging toward its identification as an extreme synchrotron BL Lac object. Here we present 38 hr of VERITAS observations of HESS J1943+213 taken over 2 yr. The source is detected with a significance of similar to 20 standard deviations, showing a remarkably stable flux and spectrum in VHE gamma-rays. Multifrequency Very Long Baseline Array (VLBA) observations of the source confirm the extended, jet-like structure previously found in the 1.6 GHz band with the European VLBI Network and detect this component in the 4.6 and 7.3 GHz bands. The radio spectral indices of the core and the jet and the level of polarization derived from the VLBA observations are in a range typical for blazars. Data from VERITAS, Fermi-LAT, Swift-XRT, the FLWO 48 ' telescope, and archival infrared and hard X-ray observations are used to construct and model the spectral energy distribution (SED) of the source with a synchrotron self-Compton model. The well-measured gamma-ray peak of the SED with VERITAS and Fermi-LAT provides constraining upper limits on the source redshift. Possible contribution of secondary gamma-rays from ultra-high-energy cosmic-ray-initiated electromagnetic cascades to the gamma-ray emission is explored, finding that only a segment of the VHE spectrum can be accommodated with this process. A variability search is performed across X-ray and gamma-ray bands. No statistically significant flux or spectral variability is detected.}, language = {en} } @article{AliuArchambaultArlenetal.2014, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Chen, X. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dumm, J. and Eisch, J. D. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, N. and Hanna, D. and Holder, J. and Hughes, G. and Hughes, Z. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Majumdar, P. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nelson, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, M. and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sadun, A. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sheidaei, F. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Boettcher, Markus and Fumagalli, M.}, title = {Investigating broadband variability of the TeV blazar 1ES 1959+650}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {797}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {Veritas Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/797/2/89}, pages = {11}, year = {2014}, abstract = {We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66\% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.}, language = {en} } @article{AliuArchambaultArlenetal.2013, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bird, R. and Boettcher, Markus and Bouvier, A. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Multiwavelenght observations and modeling of 1ES 1959+650 in a low flux state}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {775}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/775/1/3}, pages = {8}, year = {2013}, abstract = {We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (sigma) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan gamma-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of less than or similar to 2 in the high energy (E > 1MeV) and very high energy (E > 100 GeV) gamma-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.}, language = {en} } @article{AliuAuneBeilickeetal.2011, author = {Aliu, E. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Decerprit, G. and Dickherber, R. and Duke, C. and Errando, M. and Falcone, A. and Feng, Q. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Hivick, B. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Staszak, D. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Williams, D. A. and Zitzer, B. and Ciprini, S. and Fumagalli, M. and Kaplan, K. and Paneque, D. and Prochaska, J. X.}, title = {Multiwavelenght observations of the previously unidentified blzar RX J0648.7+1516}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {742}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/742/2/127}, pages = {7}, year = {2011}, abstract = {We report on the VERITAS discovery of very high energy (VHE) gamma-ray emission above 200 GeV from the high-frequency-peaked BL Lac (HBL) object RX J0648.7+1516 (GB J0648+1516), associated with 1FGL J0648.8+1516. The photon spectrum above 200 GeV is fitted by a power law dN/dE = F-0(E/E-0)(-Gamma) with a photon index Gamma of 4.4 +/- 0.8(stat) +/- 0.3(syst) and a flux normalization F-0 of (2.3 +/- 0.5(stat) +/- 1.2(sys)) x 10(-11) TeV-1 cm(-2) s(-1) with E-0 = 300 GeV. No VHE variability is detected during VERITAS observations of RX J0648.7+1516 between 2010 March 4 and April 15. Following the VHE discovery, the optical identification and spectroscopic redshift were obtained using the Shane 3 m Telescope at the Lick Observatory, showing the unidentified object to be a BL Lac type with a redshift of z = 0.179. Broadband multiwavelength observations contemporaneous with the VERITAS exposure period can be used to subclassify the blazar as an HBL object, including data from the MDM observatory, Swift-UVOT, and X-Ray Telescope, and continuous monitoring at photon energies above 1 GeV from the Fermi Large Area Telescope (LAT). We find that in the absence of undetected, high-energy rapid variability, the one-zone synchrotron self-Compton (SSC) model overproduces the high-energy gamma-ray emission measured by the Fermi-LAT over 2.3 years. The spectral energy distribution can be parameterized satisfactorily with an external-Compton or lepto-hadronic model, which have two and six additional free parameters, respectively, compared to the one-zone SSC model.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Stefania and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Imran, A. and Jameil, O. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kerr, J. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Quinn, J. and Ragan, K. and Reynolds, P. T. and Roache, E. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Stroh, M. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Multiwavelength observations of the AGN 1ES 0414+009 with veritas, FERMI-LAT, SWIFT-XRT, AND MDM}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {755}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/755/2/118}, pages = {7}, year = {2012}, abstract = {We present observations of the BL Lac object 1ES 0414+009 in the >200 GeV gamma-ray band by the VERITAS array of Cherenkov telescopes. 1ES 0414+009 was observed by VERITAS between 2008 January and 2011 February, resulting in 56.2 hr of good quality pointed observations. These observations resulted in a detection of 822 events from the source corresponding to a statistical significance of 6.4 standard deviations (6.4 sigma) above the background. The source flux, showing no evidence for variability, is measured as (5.2 +/- 1.1(stat) +/- 2.6(sys)) x 10(-12) photons cm(-2) s(-1) above 200 GeV, equivalent to approximately 2\% of the Crab Nebula flux above this energy. The differential photon spectrum from 230 GeV to 850 GeV is well fit by a power law with a photon index of Gamma = 3.4 +/- 0.5(stat) +/- 0.3(sys) and a flux normalization of (1.6 +/- 0.3(stat) +/- 0.8(sys)) x 10(-11) photons cm(-2) s(-1) at 300 GeV. We also present multiwavelength results taken in the optical (MDM), x-ray (Swift-XRT), and GeV (Fermi-LAT) bands and use these results to construct a broadband spectral energy distribution (SED). Modeling of this SED indicates that homogenous one-zone leptonic scenarios are not adequate to describe emission from the system, with a lepto-hadronic model providing a better fit to the data.}, language = {en} } @article{ArlenAuneBeilickeetal.2013, author = {Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Maier, G. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Tsurusaki, K. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Jorstad, S. G. and MacDonald, N. R. and Marscher, A. P. and Smith, P. S. and Walker, R. C. and Hovatta, T. and Richards, J. and Max-Moerbeck, W. and Readhead, A. and Lister, M. L. and Kovalev, Y. Y. and Pushkarev, A. B. and Gurwell, M. A. and Lahteenmaki, A. and Nieppola, E. and Tornikoski, M. and Jarvela, E.}, title = {Rapid TeV Gamma-Ray flaring of bl lacertae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {762}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/762/2/92}, pages = {13}, year = {2013}, abstract = {We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 +/- 0.6) x 10(-6) photons m(-2) s(-1), roughly 125\% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 +/- 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 +/- 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.}, language = {en} }