@article{GuoTianYangetal.2018, author = {Guo, Ranran and Tian, Ye and Yang, Yueqi and Jiang, Qin and Wang, Yajun and Yang, Wuli}, title = {A Yolk-Shell nanoplatform for gene-silencing-enhanced photolytic ablation of cancer}, series = {Advanced functional materials}, volume = {28}, journal = {Advanced functional materials}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201706398}, pages = {11}, year = {2018}, abstract = {Noninvasive near-infrared (NIR) light responsive therapy is a promising cancer treatment modality; however, some inherent drawbacks of conventional phototherapy heavily restrict its application in clinic. Rather than producing heat or reactive oxygen species in conventional NIR treatment, here a multifunctional yolk-shell nanoplatform is proposed that is able to generate microbubbles to destruct cancer cells upon NIR laser irradiation. Besides, the therapeutic effect is highly improved through the coalition of small interfering RNA (siRNA), which is codelivered by the nanoplatform. In vitro experiments demonstrate that siRNA significantly inhibits expression of protective proteins and reduces the tolerance of cancer cells to bubble-induced environmental damage. In this way, higher cytotoxicity is achieved by utilizing the yolk-shell nanoparticles than treated with the same nanoparticles missing siRNA under NIR laser irradiation. After surface modification with polyethylene glycol and transferrin, the yolk-shell nanoparticles can target tumors selectively, as demonstrated from the photoacoustic and ultrasonic imaging in vivo. The yolk-shell nanoplatform shows outstanding tumor regression with minimal side effects under NIR laser irradiation. Therefore, the multifunctional nanoparticles that combining bubble-induced mechanical effect with RNA interference are expected to be an effective NIR light responsive oncotherapy.}, language = {en} } @article{CookLiCaietal.2019, author = {Cook, Katherine V. and Li, Chuang and Cai, Haiyuan and Krumholz, Lee R. and Hambright, K. David and Paerl, Hans W. and Steffen, Morgan M. and Wilson, Alan E. and Burford, Michele A. and Grossart, Hans-Peter and Hamilton, David P. and Jiang, Helong and Sukenik, Assaf and Latour, Delphine and Meyer, Elisabeth I. and Padisak, Judit and Qin, Boqiang and Zamor, Richard M. and Zhu, Guangwei}, title = {The global Microcystis interactome}, series = {Limnology and oceanography}, volume = {65}, journal = {Limnology and oceanography}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.11361}, pages = {S194 -- S207}, year = {2019}, abstract = {Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280 degrees longitudinal and 90 degrees latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.}, language = {en} }