@article{CywinskiOlejkoLoehmannsroeben2015, author = {Cywinski, Piotr J. and Olejko, Lydia and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements}, series = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, volume = {887}, journal = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-2670}, doi = {10.1016/j.aca.2015.06.045}, pages = {209 -- 215}, year = {2015}, abstract = {L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Forster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10 -500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA). (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{NazirMeilingCywinskietal.2015, author = {Nazir, Rashid and Meiling, Till Thomas and Cywinski, Piotr J. and Gryko, Daniel T.}, title = {Synthesis and Optical Properties of alpha,beta-Unsaturated Ketones Bearing a Benzofuran Moiety}, series = {Asian journal of organic chemistry : an ACES journal}, volume = {4}, journal = {Asian journal of organic chemistry : an ACES journal}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2193-5807}, doi = {10.1002/ajoc.201500242}, pages = {929 -- 935}, year = {2015}, abstract = {Five pi-expanded alpha,beta-unsaturated ketones have been prepared from a strongly electron-rich benzofuran derivative via Knoevenagel reaction and aldol condensation. The incorporation of two 6-didodecylaminobenzofuran-2-yl groups at the periphery of D-pi-A and D-pi-A-pi-D molecules resulted in dyes with excellent solubility in the majority of organic solvents. In contrast to the majority of alpha,beta-unsaturated ketones, these dyes emit relatively strongly in the red region with a fluorescence quantum yield up to 40\%. They also display strong solvatofluorochromism with emission shifting from 570 nm in toluene to 670 nm in CHCl3. Depending on the chemical structure, they two-photon cross-sections (sigma(2)) are up to 1700 GM (1 GM=10(50) cm(4)s photon(-1)).}, language = {en} } @article{OlejkoCywinskiBald2015, author = {Olejko, Lydia and Cywinski, Piotr J. and Bald, Ilko}, title = {Ion-Selective formation of a guanine quadruplex on DNA origami structures}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201409278}, pages = {673 -- 677}, year = {2015}, abstract = {DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single-molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G-quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3- and 5-ends of telomeric DNA we demonstrate that the formation of G-quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions.}, language = {en} } @article{TasiorBaldDeperasinskaetal.2015, author = {Tasior, Mariusz and Bald, Ilko and Deperasinska, Irena and Cywinski, Piotr J. and Gryko, Daniel T.}, title = {An internal charge transfer-dependent solvent effect in V-shaped azacyanines}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {13}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/c5ob01633a}, pages = {11714 -- 11720}, year = {2015}, language = {en} } @misc{TasiorBaldDeperasińskaetal.2015, author = {Tasior, Mariusz and Bald, Ilko and Deperasińska, Irena and Cywiński, Piotr J. and Gryko, Daniel T.}, title = {An internal charge transfer-dependent solvent effect in V-shaped azacyanines}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102704}, pages = {11714 -- 11720}, year = {2015}, abstract = {New V-shaped non-centrosymmetric dyes, possessing a strongly electron-deficient azacyanine core, have been synthesized based on a straightforward two-step approach. The key step in this synthesis involves palladium-catalysed cross-coupling of dibromo-N,N′-methylene-2,2′-azapyridinocyanines with arylacetylenes. The resulting strongly polarized π-expanded heterocycles exhibit green to orange fluorescence and they strongly respond to changes in solvent polarity. We demonstrate that differently electron-donating peripheral groups have a significant influence on the internal charge transfer, hence on the solvent effect and fluorescence quantum yield. TD-DFT calculations confirm that, in contrast to the previously studied bis(styryl)azacyanines, the proximity of S1 and T2 states calculated for compounds bearing two 4-N,N-dimethylaminophenylethynyl moieties establishes good conditions for efficient intersystem crossing and is responsible for its low fluorescence quantum yield. Non-linear properties have also been determined for new azacyanines and the results show that depending on peripheral groups, the synthesized dyes exhibit small to large two-photon absorption cross sections reaching 4000 GM.}, language = {en} } @article{WeclawskiMeilingLeniaketal.2015, author = {Weclawski, Marek K. and Meiling, Till Thomas and Leniak, Arkadiusz and Cywinski, Piotr J. and Gryko, Daniel T.}, title = {Planar, Fluorescent Push-Pull System That Comprises Benzofuran and Iminocoumarin Moieties}, series = {Organic letters}, volume = {17}, journal = {Organic letters}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {1523-7060}, doi = {10.1021/acs.orglett.5b02042}, pages = {4252 -- 4255}, year = {2015}, abstract = {Previously unknown, vertically linked heterocycles comprised of benzofuran and iminocoumarin moieties have been synthesized directly from 1,5-dibenzoyloxyanthraquinone and arylacetonitriles via double Knoevenagel condensation followed by formal HCN elimination. The structural assembly of fully conjugated, electron-rich benzofuran and electron-deficient iminocoumarin is responsible for the strongly polarized nature of these heterocycles which translates into their polarity-sensitive fluorescence.}, language = {en} }