@article{HoulahanCurrieCottenieetal.2007, author = {Houlahan, Jeff E. and Currie, David J. and Cottenie, Karl and Cumming, Graeme S. and Ernest, S. K. Morgan and Findlay, C. Scott and Fuhlendorf, Samuel D. and Gaedke, Ursula and Legendre, Pierre and Magnuson, John J. and McArdle, Brian H. and Muldavin, Esteban H. and Noble, David and Russell, Robert and Stevens, Richard D. and Willis, Trevor J. and Woiwod, Ian P. and Wondzell, Steve M.}, title = {Compensatory dynamics are rare in natural ecological communities}, issn = {0027-8424}, doi = {10.1073/pnas.0603798104}, year = {2007}, abstract = {In population ecology, there has been a fundamental controversy about the relative importance of competition- driven (density-dependent) population regulation vs. abiotic influences such as temperature and precipitation. The same issue arises at the community level; are population sizes driven primarily by changes in the abundances of cooccurring competitors (i.e., compensatory dynamics), or do most species have a common response to environmental factors? Competitive interactions have had a central place in ecological theory, dating back to Gleason, Volterra, Hutchison and MacArthur, and, more recently, Hubbell's influential unified neutral theory of biodiversity and biogeography. If competitive interactions are important in driving year-to-year fluctuations in abundance, then changes in the abundance of one species should generally be accompanied by compensatory changes in the abundances of others. Thus, one necessary consequence of strong compensatory forces is that, on average, species within communities will covary negatively. Here we use measures of community covariance to assess the prevalence of negative covariance in 41 natural communities comprising different taxa at a range of spatial scales. We found that species in natural communities tended to covary positively rather than negatively, the opposite of what would be expected if compensatory dynamics were important. These findings suggest that abiotic factors such as temperature and precipitation are more important than competitive interactions in driving year-to-year fluctuations in species abundance within communities.}, language = {en} } @misc{HodgkinsRichardsonDommainetal.2018, author = {Hodgkins, Suzanne B. and Richardson, Curtis J. and Dommain, Ren{\´e} and Wang, Hongjun and Glaser, Paul H. and Verbeke, Brittany and Winkler, B. Rose and Cobb, Alexander R. and Rich, Virginia I. and Missilmani, Malak and Flanagan, Neal and Ho, Mengchi and Hoyt, Alison M. and Harvey, Charles F. and Vining, S. Rose and Hough, Moira A. and Moore, Tim R. and Richard, Pierre J. H. and De La Cruz, Florentino B. and Toufaily, Joumana and Hamdan, Rasha and Cooper, William T. and Chanton, Jeffrey P.}, title = {Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1125}, issn = {1866-8372}, doi = {10.25932/publishup-45965}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459658}, pages = {15}, year = {2018}, abstract = {Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 degrees C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.}, language = {en} } @article{HodgkinsRichardsonDommainetal.2018, author = {Hodgkins, Suzanne B. and Richardson, Curtis J. and Dommain, Rene and Wang, Hongjun and Glaser, Paul H. and Verbeke, Brittany and Winkler, B. Rose and Cobb, Alexander R. and Rich, Virginia I. and Missilmani, Malak and Flanagan, Neal and Ho, Mengchi and Hoyt, Alison M. and Harvey, Charles F. and Vining, S. Rose and Hough, Moira A. and Moore, Tim R. and Richard, Pierre J. H. and De la Cruz, Florentino B. and Toufaily, Joumana and Hamdan, Rasha and Cooper, William T. and Chanton, Jeffrey P.}, title = {Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-06050-2}, pages = {13}, year = {2018}, abstract = {Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 degrees C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.}, language = {en} }