@article{ComasBruHarrisonWerneretal.2019, author = {Comas-Bru, Laia and Harrison, Sandy P. and Werner, Martin and Rehfeld, Kira and Scroxton, Nick and Veiga-Pires, Cristina and Ahmad, Syed Masood and Brahim, Yassine Ait and Mozhdehi, Sahar Amirnezhad and Arienzo, Monica and Atsawawaranunt, Kamolphat and Baker, Andy and Braun, Kerstin and Breitenbach, Sebastian Franz Martin and Burstyn, Yuval and Chawchai, Sakonvan and Columbu, Andrea and Deininger, Michael and Demeny, Attila and Dixon, Bronwyn and Hatvani, Istvan Gabor and Hu, Jun and Kaushal, Nikita and Kern, Zoltan and Labuhn, Inga and Lachniet, Matthew S. and Lechleitner, Franziska A. and Lorrey, Andrew and Markowska, Monika and Nehme, Carole and Novello, Valdir F. and Oster, Jessica and Perez-Mejias, Carlos and Pickering, Robyn and Sekhon, Natasha and Wang, Xianfeng and Warken, Sophie and Atkinson, Tim and Ayalon, Avner and Baldini, James and Bar-Matthews, Miryam and Bernal, Juan Pablo and Boch, Ronny and Borsato, Andrea and Boyd, Meighan and Brierley, Chris and Cai, Yanjun and Carolin, Stacy and Cheng, Hai and Constantin, Silviu and Couchoud, Isabelle and Cruz, Francisco and Denniston, Rhawn and Dragusin, Virgil and Duan, Wuhui and Ersek, Vasile and Finne, Martin and Fleitmann, Dominik and Fohlmeister, Jens Bernd and Frappier, Amy and Genty, Dominique and Holzkamper, Steffen and Hopley, Philip and Johnston, Vanessa and Kathayat, Gayatri and Keenan-Jones, Duncan and Koltai, Gabriella and Li, Ting-Yong and Lone, Mahjoor Ahmad and Luetscher, Marc and Mattey, Dave and Moreno, Ana and Moseley, Gina and Psomiadis, David and Ruan, Jiaoyang and Scholz, Denis and Sha, Lijuan and Smith, Andrew Christopher and Strikis, Nicolas and Treble, Pauline and Unal-Imer, Ezgi and Vaks, Anton and Vansteenberge, Stef and Voarintsoa, Ny Riavo G. and Wong, Corinne and Wortham, Barbara and Wurtzel, Jennifer and Zhang, Haiwei}, title = {Evaluating model outputs using integrated global speleothem records of climate change since the last glacial}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {SISAL Working Grp}, issn = {1814-9324}, doi = {10.5194/cp-15-1557-2019}, pages = {1557 -- 1579}, year = {2019}, abstract = {Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices.}, language = {en} } @article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{AtsawawaranuntComasBruMozhdehietal.2018, author = {Atsawawaranunt, Kamolphat and Comas-Bru, Laia and Mozhdehi, Sahar Amirnezhad and Deininger, Michael and Harrison, Sandy P. and Baker, Andy and Boyd, Meighan and Kaushal, Nikita and Ahmad, Syed Masood and Brahim, Yassine Ait and Arienzo, Monica and Bajo, Petra and Braun, Kerstin and Burstyn, Yuval and Chawchai, Sakonvan and Duan, Wuhui and Hatvani, Istvan Gabor and Hu, Jun and Kern, Zoltan and Labuhn, Inga and Lachniet, Matthew and Lechleitner, Franziska A. and Lorrey, Andrew and Perez-Mejias, Carlos and Pickering, Robyn and Scroxton, Nick and Atkinson, Tim and Ayalon, Avner and Baldini, James and Bar-Matthews, Miriam and Pablo Bernal, Juan and Breitenbach, Sebastian Franz Martin and Boch, Ronny and Borsato, Andrea and Cai, Yanjun and Carolin, Stacy and Cheng, Hai and Columbu, Andrea and Couchoud, Isabelle and Cruz, Francisco and Demeny, Attila and Dominguez-Villar, David and Dragusin, Virgil and Drysdale, Russell and Ersek, Vasile and Finne, Martin and Fleitmann, Dominik and Fohlmeister, Jens Bernd and Frappier, Amy and Genty, Dominique and Holzkamper, Steffen and Hopley, Philip and Kathayat, Gayatri and Keenan-Jones, Duncan and Koltai, Gabriella and Luetscher, Marc and Li, Ting-Yong and Lone, Mahjoor Ahmad and Markowska, Monika and Mattey, Dave and McDermott, Frank and Moreno, Ana and Moseley, Gina and Nehme, Carole and Novello, Valdir F. and Psomiadis, David and Rehfeld, Kira and Ruan, Jiaoyang and Sekhon, Natasha and Sha, Lijuan and Sholz, Denis and Shopov, Yavor and Smith, Andrew and Strikis, Nicolas and Treble, Pauline and Unal-Imer, Ezgi and Vaks, Anton and Vansteenberge, Stef and Veiga-Pires, Cristina and Voarintsoa, Ny Riavo and Wang, Xianfeng and Wong, Corinne and Wortham, Barbara and Wurtzel, Jennifer and Zong, Baoyun}, title = {The SISAL database}, series = {Earth System Science Data}, volume = {10}, journal = {Earth System Science Data}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {SISAL Working Grp Members}, issn = {1866-3508}, doi = {10.5194/essd-10-1687-2018}, pages = {1687 -- 1713}, year = {2018}, abstract = {Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide "out-of-sample" evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (delta O-18, delta C-13) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data.}, language = {en} } @article{LaraNitzeGrosseetal.2018, author = {Lara, Mark J. and Nitze, Ingmar and Grosse, Guido and Martin, Philip and McGuire, A. David}, title = {Reduced arctic tundra productivity linked with landform and climate change interactions}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-20692-8}, pages = {10}, year = {2018}, abstract = {Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.}, language = {en} } @article{OstermeyerKappeMenzeletal.2005, author = {Ostermeyer, Martin and Kappe, Philip and Menzel, Ralf and Wulfmeyer, Volker}, title = {Diode-pumped Nd : YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system}, issn = {0003-6935}, year = {2005}, abstract = {In the original publication [Ostermeyer et al., Appl. Opt., 44, 582-590 (2005)], Fig. 5 appeared twice as Figs. 4 and 5. This inaccuracy is corrected here. (c) 2005 Optical Society of America}, language = {en} } @article{KappeOstermeyerMenzel2005, author = {Kappe, Philip and Ostermeyer, Martin and Menzel, Ralf}, title = {Active mode locking of a phase-conjugating SBS-laser oscillator}, issn = {0946-2171}, year = {2005}, abstract = {We present a flashlamp-pumped Nd: YAG laser simultaneously emitting pulse structures on microsecond, nanosecond and picosecond time scales. Within a microsecond flashlamp pump pulse a nonlinear reflector based on stimulated Brillouin scattering (SBS) generates several Q-switch pulses. The phase-conjugating effect of the SBS reflector provides a compensation of phase distortions generated inside the laser rod, resulting in transverse fundamental mode operation. Additional acousto-optic loss modulation inside the resonator leads to mode locking. As a result, each Q-switch pulse is subdivided into several picosecond pulses. Energies of up to 2 mJ for the mode-locked pulses with durations between 220 and 800 ps are demonstrated. The wide variability of the laser's temporal output parameters as well as its high beam quality make it a splendid tool for fundamental research in laser materials processing}, language = {en} } @article{KappeOstermeyerMenzel2005, author = {Kappe, Philip and Ostermeyer, Martin and Menzel, Ralf}, title = {Active mode locking of a phase-conjugating SBS-laser oscillator}, issn = {0946-2171}, year = {2005}, language = {en} } @book{OstermeyerKappeMenzeletal.2005, author = {Ostermeyer, Martin and Kappe, Philip and Menzel, Ralf and Sommer, S. and Dausinger, Friedrich}, title = {Laser drilling in thin materials with bursts of ns-pulses generated by stimulated Brillouin scattering (SBS)}, year = {2005}, abstract = {A passively Q-switched laser with a nonlinear mirror on the basis of stimulated Brillouin scattering (SBS), generates bursts of pulses with a few 10 ns pulse duration and a separation between 20-90 mu s. Percussion drilling and trepanning are performed in different materials with 1 mm thickness. The optimum parameter set of these pulse trains with regard to the burr height and ablation rate is investigated. Differences in the processing results between single pulse and multi pulse structures are discussed. In addition the laser allowed for transiently mode locked operation. Results for mode locked and merely Q-switched operation were compared}, language = {en} } @book{OstermeyerKappeMenzeletal.2005, author = {Ostermeyer, Martin and Kappe, Philip and Menzel, Ralf and Wulfmeyer, Volker}, title = {Diode-pumped Nd : YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system}, year = {2005}, abstract = {A pulsed, diode-laser-pumped Nd:YAG master oscillator power amplifier (MOPA) in rod geometry, frequency stabilized with a modified Pound-Drever-Hall scheme is presented. The apparatus delivers 33-ns pulses with a maximum pulse energy of 0.5 J at 1064 nm. The system was set up in two different configurations for repetition rates of 100 or 250 Hz. The beam quality was measured to be 1.5 times the diffraction limit at a pulse energy of 405 mJ and a repetition rate of 100 Hz. At 250 Hz with the same pulse energy, the M-2 was better than 2.1. The radiation is frequency converted with an efficiency of 50\% to 532 nm. This MOPA system will be the pump laser of transmitters for a variety of high-end, scanning lidar systems. (C) 2005 Optical Society of America}, language = {en} } @article{KappeMenzelOstermeyer2006, author = {Kappe, Philip and Menzel, Ralf and Ostermeyer, Martin}, title = {Analysis of the temporal and spectral output properties of a mode-locked and Q-switched laser oscillator with a nonlinear mirror based on stimulated Brillouin scattering}, issn = {1050-2947}, doi = {10.1103/Physreva.74.013809}, year = {2006}, abstract = {The emission dynamics of a mode-locked laser oscillator with a nonlinear mirror based on stimulated Brillouin scattering (SBS) has been investigated with regard to its spectrum and to its intensity distribution. The investigation was carried out experimentally as well as by numerical simulations. The laser yields trains of pulses with measured durations of 410 ps and energies of the single pulse of up to 2 mJ. Two theoretical models describing the complex emission dynamics of a mode-locked SBS-laser oscillator are introduced. The first model consists of spectrally resolved laser rate equations and thus describes the mode locking in the frequency domain by the superposition of the longitudinal resonator modes. The SBS-Q-switch is incorporated by a phenomenological description of the time dependent SBS reflectivity. Numerical simulations based on this model yield the evolution of a few 100 longitudinal laser modes and the corresponding intensity distribution during the course of a Q-switch pulse with 10-ps resolution. The influences of the different components on the spectrum and thus on the pulse duration will be discussed. The second model describes all occurring dynamics in the time domain providing easy access to the study of misalignment on the output dynamics. Results of numerical simulations of both models and measurement results are compared}, language = {en} }