@inproceedings{BorowskiGlowinskiFristeretal.2018, author = {Borowski, Andreas and Glowinski, Ingrid and Frister, Jonas and H{\"o}ttecke, Dietmar and Buth, Katrin and Koenen, Jenna and Masanek, Nicole and Reichwein, Wilko and Scholten, Nina and Sprenger, Sandra and Stender, Peter and W{\"o}hlke, Carina and Komorek, Michael and Freckmann, Janine and Hofmann, Josefine and Niesel, Verena and Richter, Chris and Mehlmann, Nelli and Bikner-Ahsbahs, Angelika and Unverricht, Katja and Schanze, Sascha and Bittorf, Robert Marten and Meier, Monique and Grospietsch, Finja and Mayer, J{\"u}rgen and Gimbel, Katharina and Ziepprecht, Kathrin and Hofmann, Judith and Kramer, Charlotte and M{\"u}ller, Britta-Kornelia and Rohde, Andreas and Z{\"u}hlsdorf, Felix and Winkler, Iris and Laging, Ralf and Peter, Carina and Schween, Michael and H{\"a}rle, Gerhard and Busse, Beatrix and Mahner, Sebastian and K{\"o}stler, Verena and Kufner, Sabrina and M{\"a}gdefrau, Jutta and M{\"u}ller, Christian and Beck, Christina and Kriehuber, Eva and Boch, Florian and Engl, Anna-Teresa and Helzel, Andreas and Pickert, Tina and Reiter, Christian and Blasini, Bettina and Nerdel, Claudia and Lewalter, Doris and Schiffhauer, Silke and Richter-Gebert, J{\"u}rgen and Bannert, Maria and Maahs, Mirjam and Reißner, Maria and Ungar, Patrizia and von Wachter, Jana-Kristin and Hellmann, Katharina and Zaki, Katja and Pohlenz, Philipp}, title = {Koh{\"a}renz in der universit{\"a}ren Lehrerbildung}, editor = {Glowinski, Ingrid and Borowski, Andreas and Gillen, Julia and Schanze, Sascha and von Meien, Joachim}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-438-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414267}, year = {2018}, abstract = {One area that is supported by the project "Qualit{\"a}tsoffensive Lehrerbildung" (funded by BMBF) is the improvement of collaboration and coordination between studies in the discipline, studies in pedagogical content knowledge, and studies in pedagogical knowledge during teacher education at university. Aiming a better coordination among these three parts of teacher education at university, many of the supported projects have designed and realized university-specific approaches. This conference proceedings volume comprises contributions by 15 of these projects. Seven of those were introduced and discussed in workshops on the occasion of two cross-regional project-conferences in Hannover and Potsdam. Overall, the contributions give a theoretically funded as well as a practice-oriented overview of current approaches and concepts to achieve a better connection between study units concerning studies in content knowledge, pedagogical content knowledge and pedagogical knowledge in teacher education. The volume presents university projects, which take effect on different levels (at the level of curriculum and content, at a collegiate level, at the level of structural conditions of universities). The different approaches are described in a way that they can provide a basis for transfer to other subjects or further universities. The contributions are aimed at teacher educators as well as other actors working in the field of teaching- and quality development at universities. All of them can take transferable ideas and impulses from the described concepts and formats.}, language = {de} } @article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @inproceedings{KurbelNowakAzodietal.2015, author = {Kurbel, Karl and Nowak, Dawid and Azodi, Amir and Jaeger, David and Meinel, Christoph and Cheng, Feng and Sapegin, Andrey and Gawron, Marian and Morelli, Frank and Stahl, Lukas and Kerl, Stefan and Janz, Mariska and Hadaya, Abdulmasih and Ivanov, Ivaylo and Wiese, Lena and Neves, Mariana and Schapranow, Matthieu-Patrick and F{\"a}hnrich, Cindy and Feinbube, Frank and Eberhardt, Felix and Hagen, Wieland and Plauth, Max and Herscheid, Lena and Polze, Andreas and Barkowsky, Matthias and Dinger, Henriette and Faber, Lukas and Montenegro, Felix and Czach{\´o}rski, Tadeusz and Nycz, Monika and Nycz, Tomasz and Baader, Galina and Besner, Veronika and Hecht, Sonja and Schermann, Michael and Krcmar, Helmut and Wiradarma, Timur Pratama and Hentschel, Christian and Sack, Harald and Abramowicz, Witold and Sokolowska, Wioletta and Hossa, Tymoteusz and Opalka, Jakub and Fabisz, Karol and Kubaczyk, Mateusz and Cmil, Milena and Meng, Tianhui and Dadashnia, Sharam and Niesen, Tim and Fettke, Peter and Loos, Peter and Perscheid, Cindy and Schwarz, Christian and Schmidt, Christopher and Scholz, Matthias and Bock, Nikolai and Piller, Gunther and B{\"o}hm, Klaus and Norkus, Oliver and Clark, Brian and Friedrich, Bj{\"o}rn and Izadpanah, Babak and Merkel, Florian and Schweer, Ilias and Zimak, Alexander and Sauer, J{\"u}rgen and Fabian, Benjamin and Tilch, Georg and M{\"u}ller, David and Pl{\"o}ger, Sabrina and Friedrich, Christoph M. and Engels, Christoph and Amirkhanyan, Aragats and van der Walt, Est{\´e}e and Eloff, J. H. P. and Scheuermann, Bernd and Weinknecht, Elisa}, title = {HPI Future SOC Lab}, editor = {Meinel, Christoph and Polze, Andreas and Oswald, Gerhard and Strotmann, Rolf and Seibold, Ulrich and Schulzki, Bernhard}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102516}, pages = {iii, 154}, year = {2015}, abstract = {Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Erm{\"o}glichung und F{\"o}rderung des Austausches zwischen Forschungsgemeinschaft und Industrie. Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei f{\"u}r Forschungszwecke zur Verf{\"u}gung gestellt. Dazu z{\"a}hlen teilweise noch nicht am Markt verf{\"u}gbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren w{\"a}ren, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien. In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2015 vorgestellt. Ausgew{\"a}hlte Projekte stellten ihre Ergebnisse am 15. April 2015 und 4. November 2015 im Rahmen der Future SOC Lab Tag Veranstaltungen vor.}, language = {en} } @article{AdelsbergerKulkarniJainetal.2010, author = {Adelsberger, Joseph and Kulkarni, Amit and Jain, Abhinav and Wang, Weinan and Bivigou Koumba, Achille Mayelle and Busch, Peter and Pipich, Vitaliy and Holderer, Olaf and Hellweg, Thomas and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Thermoresponsive PS-b-PNIPAM-b-PS micelles : aggregation behavior, segmental dynamics, and thermal response}, issn = {0024-9297}, doi = {10.1021/Ma902714p}, year = {2010}, abstract = {We have studied I lie thermal behavior of amphiphilic, symmetric triblock copolymers having short, deuterated polystyrene (PS) end blocks and a large poly(N-isopropylacrylarnicle) (PNIPAM) middle block exhibiting a lower critical solution temperature (LCST) in aqueous solution. A wide range of concentrations (0.1-300 mg/mL) is investigated using it number of analytical methods such as fluorescence correlation spectroscopy (FCS), turbidimetry, dynamic light scattering (DLS), small-angle neutron scattering (SANS), and neutron spin-echo spectroscopy (NSE). The critical micelle concentration is determined using FCS to be 1 mu M or less. The collapse of the micelles at the LCST is investigated using turbidimetry and DLS and shows a weak dependence on the degree of polymerization of the PNIPAM block. SANS with contrast matching allows its to reveal the core-shell Structure of the micelles as well as their correlation as a function of temperature. The segmental dynamics of the PNIPAM shell are studied as a function of temperature and arc found to be faster in the collapsed state than in the swollen state. The mode detected has a linear dispersion in q(2) and is found to be faster in the collapsed state as compared to the swollen state. We attribute this result to the averaging over mobile and immobilized segments.}, language = {en} } @article{AdelsbergerBivigouKoumbaMiasnikovaetal.2015, author = {Adelsberger, Joseph and Bivigou Koumba, Achille Mayelle and Miasnikova, Anna and Busch, Peter and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution-a SANS study of the temperature-induced switching behavior}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {293}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-015-3535-6}, pages = {1515 -- 1523}, year = {2015}, abstract = {A concentrated solution of a symmetric triblock copolymer with a thermoresponsive poly(methoxy diethylene glycol acrylate) (PMDEGA) middle block and short hydrophobic, fully deuterated polystyrene end blocks is investigated in D2O where it undergoes a lower critical solution temperature-type phase transition at ca. 36 A degrees C. Small-angle neutron scattering (SANS) in a wide temperature range (15-50 A degrees C) is used to characterize the size and inner structure of the micelles as well as the correlation between the micelles and the formation of aggregates by the micelles above the cloud point (CP). A model featuring spherical core-shell micelles, which are correlated by a hard-sphere potential or a sticky hard-sphere potential together with a Guinier form factor describing aggregates formed by the micelles above the CP, fits the SANS curves well in the entire temperature range. The thickness of the thermoresponsive micellar PMDEGA shell as well as the hard-sphere radius increase slightly already below the cloud point. Whereas the thickness of the thermoresponsive micellar shell hardly shrinks when heating through the CP and up to 50 A degrees C, the hard-sphere radius decreases within 3.5 K at the CP. The volume fraction decreases already significantly below the CP, which may be at the origin of the previously observed gel-sol transition far below the CP (Miasnikova et al., Langmuir 28: 4479-4490, 2012). Above the CP, small, and at higher temperatures, large aggregates are formed by the micelles.}, language = {en} } @article{AdelsbergerMeierKollBivigouKoumbaetal.2011, author = {Adelsberger, Joseph and Meier-Koll, Andreas and Bivigou Koumba, Achille Mayelle and Busch, Peter and Holderer, Olaf and Hellweg, Thomas and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2382-3}, pages = {711 -- 720}, year = {2011}, abstract = {We investigate concentrated solutions of poly(styrene-b-N-isopropyl acrylamide) (P(S-b-NIPAM)) diblock copolymers in deuterated water (D2O). Both structural changes and the changes of the segmental dynamics occurring upon heating through the lower critical solution temperature (LCST) of PNIPAM are studied using small-angle neutron scattering and neutron spin-echo spectroscopy. The collapse of the micellar shell and the cluster formation of collapsed micelles at the LCST as well as an increase of the segmental diffusion coefficient after crossing the LCST are detected. Comparing to our recent results on a triblock copolymer P(S-b-NIPAM-b-S) [25], we observe that the collapse transition of P(S-b-NIPAM) is more complex and that the PNIPAM segmental dynamics are faster than in P(S-b-NIPAM-b-S).}, language = {en} } @misc{FitziMarcucciMueller2017, author = {Fitzi, Gregor and Marcucci, Nicola and M{\"u}ller, Hans-Peter}, title = {Interview by Gregor Fitzi and Nicola Marcucci with Hans-Peter M{\"u}ller on the reception of Emile Durkheim in Germany. Berlin: Humboldt University of Berlin, 25 February 2015}, series = {Journal of Classical Sociology}, volume = {17}, journal = {Journal of Classical Sociology}, number = {4}, publisher = {Sage Publ.}, address = {London}, issn = {1468-795X}, doi = {10.1177/1468795X17736132}, pages = {399 -- 422}, year = {2017}, abstract = {Just after the publication of the Theory of Communicative Action in 1981, a new generation of interpreters started a different reception of Durkheim in Germany. Hans-Peter M{\"u}ller, sociologist and editor of the German translation of Le{\c{c}}ons de sociologie, reconstructs the history of the German Durkheim's Reception and illuminates the reasons for his interest in the French sociologist. He delivers different insights into the background which permitted the post-Habermasian generation to reach a new understanding of Durkheim's work by enlightening the scientific and political conditions from which this new sensibility emerged.}, language = {en} } @article{MuellerBochPratietal.2018, author = {M{\"u}ller, J{\"o}rg and Boch, Steffen and Prati, Daniel and Socher, Stephanie A. and Pommer, Ulf and Hessenm{\"o}ller, Dominik and Schall, Peter and Schulze, Ernst Detlef and Fischer, Markus}, title = {Effects of forest management on bryophyte species richness in Central European forests}, series = {Forest ecology and management}, volume = {432}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.10.019}, pages = {850 -- 859}, year = {2018}, abstract = {We studied the effect of three major forest management types (unmanaged beech, selection beech, and age class forests) and stand variables (SMId, soil pH, proportion of conifers, litter cover, deadwood cover, rock cover and cumulative cover of woody trees and shrubs) on bryophyte species richness in 1050 forest plots in three regions in Germany. In addition, we analysed the species richness of four ecological guilds of bryophytes according to their colonized substrates (deadwood, rock, soil, bark) and the number of woodland indicator bryophyte species. Beech selection forests turned out to be the most species rich management type, whereas unmanaged beech forests revealed even lower species numbers than age-class forests. Increasing conifer proportion increased bryophyte species richness but not the number of woodland indicator bryophyte species. The richness of the four ecological guilds mainly responded to the abundance of their respective substrate. We conclude that the permanent availability of suitable substrates is most important for bryophyte species richness in forests, which is not stringently linked to management type. Therefore, managed age-class forests and selection forests may even exceed unmanaged forests in bryophyte species richness due to higher substrate supply and therefore represent important habitats for bryophytes. Typical woodland indicator bryophytes and their species richness were negatively affected by SMId (management intensity) and therefore better indicate forest integrity than the species richness of all bryophytes. Nature conservation efforts should focus on the reduction of management intensity. Moreover, maintaining and increasing a variability of substrates and habitats, such as coarse woody debris, increasing structural heterogeneity by retaining patches with groups of old, mature to over-mature trees in managed forests, maintaining forest climate conditions by silvicultural methods that assure stand continuity, e.g. by selection cutting rather than clear cutting and shelterwood logging might promote bryophyte diversity and in particular the one of woodland indicator bryophytes.}, language = {en} } @inproceedings{CurzonKalasSchubertetal.2015, author = {Curzon, Paul and Kalas, Ivan and Schubert, Sigrid and Schaper, Niclas and Barnes, Jan and Kennewell, Steve and Br{\"o}ker, Kathrin and Kastens, Uwe and Magenheim, Johannes and Dagiene, Valentina and Stupuriene, Gabriele and Ellis, Jason Brent and Abreu-Ellis, Carla Reis and Grillenberger, Andreas and Romeike, Ralf and Haugsbakken, Halvdan and Jones, Anthony and Lewin, Cathy and McNicol, Sarah and Nelles, Wolfgang and Neugebauer, Jonas and Ohrndorf, Laura and Schaper, Niclas and Schubert, Sigrid and Opel, Simone and Kramer, Matthias and Trommen, Michael and Pottb{\"a}cker, Florian and Ilaghef, Youssef and Passig, David and Tzuriel, David and Kedmi, Ganit Eshel and Saito, Toshinori and Webb, Mary and Weigend, Michael and Bottino, Rosa and Chioccariello, Augusto and Christensen, Rhonda and Knezek, Gerald and Gioko, Anthony Maina and Angondi, Enos Kiforo and Waga, Rosemary and Ohrndorf, Laura and Or-Bach, Rachel and Preston, Christina and Younie, Sarah and Przybylla, Mareen and Romeike, Ralf and Reynolds, Nicholas and Swainston, Andrew and Bendrups, Faye and Sysło, Maciej M. and Kwiatkowska, Anna Beata and Zieris, Holger and Gerstberger, Herbert and M{\"u}ller, Wolfgang and B{\"u}chner, Steffen and Opel, Simone and Schiller, Thomas and Wegner, Christian and Zender, Raphael and Lucke, Ulrike and Diethelm, Ira and Syrbe, J{\"o}rn and Lai, Kwok-Wing and Davis, Niki and Eickelmann, Birgit and Erstad, Ola and Fisser, Petra and Gibson, David and Khaddage, Ferial and Knezek, Gerald and Micheuz, Peter and Kloos, Carlos Delgado}, title = {KEYCIT 2014}, editor = {Brinda, Torsten and Reynolds, Nicholas and Romeike, Ralf and Schwill, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-292-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-70325}, pages = {438}, year = {2015}, abstract = {In our rapidly changing world it is increasingly important not only to be an expert in a chosen field of study but also to be able to respond to developments, master new approaches to solving problems, and fulfil changing requirements in the modern world and in the job market. In response to these needs key competencies in understanding, developing and using new digital technologies are being brought into focus in school and university programmes. The IFIP TC3 conference "KEYCIT - Key Competences in Informatics and ICT (KEYCIT 2014)" was held at the University of Potsdam in Germany from July 1st to 4th, 2014 and addressed the combination of key competencies, Informatics and ICT in detail. The conference was organized into strands focusing on secondary education, university education and teacher education (organized by IFIP WGs 3.1 and 3.3) and provided a forum to present and to discuss research, case studies, positions, and national perspectives in this field.}, language = {en} } @article{WiggeringDalchowGlemnitzetal.2006, author = {Wiggering, Hubert and Dalchow, Claus and Glemnitz, Michael and Helming, Katharina and M{\"u}ller, Klaus and Schultz, Alfred and Stachow, Ulrich and Zander, Peter}, title = {Indicators for multifunctional land use : linking socio-economic requirements with landscape potentials}, year = {2006}, abstract = {Indicators to assess sustainable land development often focus on either economic or ecologic aspects of landscape use. The concept of multifunctional land use helps merging those two focuses by emphasising on the rule that economic action is per se accompanied by ecological utility: commodity outputs (CO, e.g., yields) are paid for on the market, but non-commodity outputs (NCO, e.g., landscape aesthetics) so far are public goods with no markets. Agricultural production schemes often provided both outputs by joint production, but with technical progress under prevailing economic pressure, joint production increasingly vanishes by decoupling of commodity from non-commodity production. Simultaneously, by public and political awareness of these shortcomings, there appears a societal need or even demand for some non-commodity outputs of land use, which induces a market potential, and thus, shift towards the status of a commodity outputs. An approach is presented to merge both types of output by defining an indicator of social utility (SUMLU): production schemes are considered with respect to social utility of both commodity and non-commodity outputs. Social utility in this sense includes environmental and economic services as long as society expresses a demand for them. For each combination of parameters at specific frame conditions (e.g., soil and climate properties of a landscape) a production possibility curve can reflect trade-offs between commodity and non-commodity outputs. On each production possibility curve a welfare optimum can be identified expressing the highest achievable value of social utility as a trade-off between CO and NCO production. When applying more parameters, a cluster of welfare optimums is generated. Those clusters can be used for assessing production schemes with respect to sustainable land development. Examples of production possibility functions are given on easy applicable parameters (nitrogen leaching versus gross margin) and on more complex ones (biotic integrity). Social utility, thus allows to evaluate sustainability of land development in a cross-sectoral approach with respect to multifunctionality. (C) 2005 Elsevier Ltd. All rights reserved}, language = {en} }