@article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{ChipmanFerrierBrenaetal.2014, author = {Chipman, Ariel D. and Ferrier, David E. K. and Brena, Carlo and Qu, Jiaxin and Hughes, Daniel S. T. and Schroeder, Reinhard and Torres-Oliva, Montserrat and Znassi, Nadia and Jiang, Huaiyang and Almeida, Francisca C. and Alonso, Claudio R. and Apostolou, Zivkos and Aqrawi, Peshtewani and Arthur, Wallace and Barna, Jennifer C. J. and Blankenburg, Kerstin P. and Brites, Daniela and Capella-Gutierrez, Salvador and Coyle, Marcus and Dearden, Peter K. and Du Pasquier, Louis and Duncan, Elizabeth J. and Ebert, Dieter and Eibner, Cornelius and Erikson, Galina and Evans, Peter D. and Extavour, Cassandra G. and Francisco, Liezl and Gabaldon, Toni and Gillis, William J. and Goodwin-Horn, Elizabeth A. and Green, Jack E. and Griffiths-Jones, Sam and Grimmelikhuijzen, Cornelis J. P. and Gubbala, Sai and Guigo, Roderic and Han, Yi and Hauser, Frank and Havlak, Paul and Hayden, Luke and Helbing, Sophie and Holder, Michael and Hui, Jerome H. L. and Hunn, Julia P. and Hunnekuhl, Vera S. and Jackson, LaRonda and Javaid, Mehwish and Jhangiani, Shalini N. and Jiggins, Francis M. and Jones, Tamsin E. and Kaiser, Tobias S. and Kalra, Divya and Kenny, Nathan J. and Korchina, Viktoriya and Kovar, Christie L. and Kraus, F. Bernhard and Lapraz, Francois and Lee, Sandra L. and Lv, Jie and Mandapat, Christigale and Manning, Gerard and Mariotti, Marco and Mata, Robert and Mathew, Tittu and Neumann, Tobias and Newsham, Irene and Ngo, Dinh N. and Ninova, Maria and Okwuonu, Geoffrey and Ongeri, Fiona and Palmer, William J. and Patil, Shobha and Patraquim, Pedro and Pham, Christopher and Pu, Ling-Ling and Putman, Nicholas H. and Rabouille, Catherine and Ramos, Olivia Mendivil and Rhodes, Adelaide C. and Robertson, Helen E. and Robertson, Hugh M. and Ronshaugen, Matthew and Rozas, Julio and Saada, Nehad and Sanchez-Gracia, Alejandro and Scherer, Steven E. and Schurko, Andrew M. and Siggens, Kenneth W. and Simmons, DeNard and Stief, Anna and Stolle, Eckart and Telford, Maximilian J. and Tessmar-Raible, Kristin and Thornton, Rebecca and van der Zee, Maurijn and von Haeseler, Arndt and Williams, James M. and Willis, Judith H. and Wu, Yuanqing and Zou, Xiaoyan and Lawson, Daniel and Muzny, Donna M. and Worley, Kim C. and Gibbs, Richard A. and Akam, Michael and Richards, Stephen}, title = {The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima}, series = {PLoS biology}, volume = {12}, journal = {PLoS biology}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1545-7885}, doi = {10.1371/journal.pbio.1002005}, pages = {24}, year = {2014}, abstract = {Myriapods (e. g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.}, language = {en} } @article{HeinrichBalanzateguiBensetal.2018, author = {Heinrich, Ingo and Balanzategui, Daniel and Bens, Oliver and Blasch, Gerald and Blume, Theresa and Boettcher, Falk and Borg, Erik and Brademann, Brian and Brauer, Achim and Conrad, Christopher and Dietze, Elisabeth and Dr{\"a}ger, Nadine and Fiener, Peter and Gerke, Horst H. and G{\"u}ntner, Andreas and Heine, Iris and Helle, Gerhard and Herbrich, Marcus and Harfenmeister, Katharina and Heussner, Karl-Uwe and Hohmann, Christian and Itzerott, Sibylle and Jurasinski, Gerald and Kaiser, Knut and Kappler, Christoph and Koebsch, Franziska and Liebner, Susanne and Lischeid, Gunnar and Merz, Bruno and Missling, Klaus Dieter and Morgner, Markus and Pinkerneil, Sylvia and Plessen, Birgit and Raab, Thomas and Ruhtz, Thomas and Sachs, Torsten and Sommer, Michael and Spengler, Daniel and Stender, Vivien and St{\"u}ve, Peter and Wilken, Florian}, title = {Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE)}, series = {Vadose zone journal}, volume = {17}, journal = {Vadose zone journal}, number = {1}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2018.06.0116}, pages = {25}, year = {2018}, abstract = {The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes.}, language = {en} } @article{TiegsCostelloIskenetal.2019, author = {Tiegs, Scott D. and Costello, David M. and Isken, Mark W. and Woodward, Guy and McIntyre, Peter B. and Gessner, Mark O. and Chauvet, Eric and Griffiths, Natalie A. and Flecker, Alex S. and Acuna, Vicenc and Albarino, Ricardo and Allen, Daniel C. and Alonso, Cecilia and Andino, Patricio and Arango, Clay and Aroviita, Jukka and Barbosa, Marcus V. M. and Barmuta, Leon A. and Baxter, Colden V. and Bell, Thomas D. C. and Bellinger, Brent and Boyero, Luz and Brown, Lee E. and Bruder, Andreas and Bruesewitz, Denise A. and Burdon, Francis J. and Callisto, Marcos and Canhoto, Cristina and Capps, Krista A. and Castillo, Maria M. and Clapcott, Joanne and Colas, Fanny and Colon-Gaud, Checo and Cornut, Julien and Crespo-Perez, Veronica and Cross, Wyatt F. and Culp, Joseph M. and Danger, Michael and Dangles, Olivier and de Eyto, Elvira and Derry, Alison M. and Diaz Villanueva, Veronica and Douglas, Michael M. and Elosegi, Arturo and Encalada, Andrea C. and Entrekin, Sally and Espinosa, Rodrigo and Ethaiya, Diana and Ferreira, Veronica and Ferriol, Carmen and Flanagan, Kyla M. and Fleituch, Tadeusz and Shah, Jennifer J. Follstad and Frainer, Andre and Friberg, Nikolai and Frost, Paul C. and Garcia, Erica A. and Lago, Liliana Garcia and Garcia Soto, Pavel Ernesto and Ghate, Sudeep and Giling, Darren P. and Gilmer, Alan and Goncalves, Jose Francisco and Gonzales, Rosario Karina and Graca, Manuel A. S. and Grace, Mike and Grossart, Hans-Peter and Guerold, Francois and Gulis, Vlad and Hepp, Luiz U. and Higgins, Scott and Hishi, Takuo and Huddart, Joseph and Hudson, John and Imberger, Samantha and Iniguez-Armijos, Carlos and Iwata, Tomoya and Janetski, David J. and Jennings, Eleanor and Kirkwood, Andrea E. and Koning, Aaron A. and Kosten, Sarian and Kuehn, Kevin A. and Laudon, Hjalmar and Leavitt, Peter R. and Lemes da Silva, Aurea L. and Leroux, Shawn J. and Leroy, Carri J. and Lisi, Peter J. and MacKenzie, Richard and Marcarelli, Amy M. and Masese, Frank O. and Mckie, Brendan G. and Oliveira Medeiros, Adriana and Meissner, Kristian and Milisa, Marko and Mishra, Shailendra and Miyake, Yo and Moerke, Ashley and Mombrikotb, Shorok and Mooney, Rob and Moulton, Tim and Muotka, Timo and Negishi, Junjiro N. and Neres-Lima, Vinicius and Nieminen, Mika L. and Nimptsch, Jorge and Ondruch, Jakub and Paavola, Riku and Pardo, Isabel and Patrick, Christopher J. and Peeters, Edwin T. H. M. and Pozo, Jesus and Pringle, Catherine and Prussian, Aaron and Quenta, Estefania and Quesada, Antonio and Reid, Brian and Richardson, John S. and Rigosi, Anna and Rincon, Jose and Risnoveanu, Geta and Robinson, Christopher T. and Rodriguez-Gallego, Lorena and Royer, Todd V. and Rusak, James A. and Santamans, Anna C. and Selmeczy, Geza B. and Simiyu, Gelas and Skuja, Agnija and Smykla, Jerzy and Sridhar, Kandikere R. and Sponseller, Ryan and Stoler, Aaron and Swan, Christopher M. and Szlag, David and Teixeira-de Mello, Franco and Tonkin, Jonathan D. and Uusheimo, Sari and Veach, Allison M. and Vilbaste, Sirje and Vought, Lena B. M. and Wang, Chiao-Ping and Webster, Jackson R. and Wilson, Paul B. and Woelfl, Stefan and Xenopoulos, Marguerite A. and Yates, Adam G. and Yoshimura, Chihiro and Yule, Catherine M. and Zhang, Yixin X. and Zwart, Jacob A.}, title = {Global patterns and drivers of ecosystem functioning in rivers and riparian zones}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav0486}, pages = {8}, year = {2019}, abstract = {River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.}, language = {en} } @article{SchallGossnerHeinrichsetal.2017, author = {Schall, Peter and Gossner, Martin M. and Heinrichs, Steffi and Fischer, Markus and Boch, Steffen and Prati, Daniel and Jung, Kirsten and Baumgartner, Vanessa and Blaser, Stefan and B{\"o}hm, Stefan and Buscot, Francois and Daniel, Rolf and Goldmann, Kezia and Kaiser, Kristin and Kahl, Tiemo and Lange, Markus and M{\"u}ller, J{\"o}rg Hans and Overmann, J{\"o}rg and Renner, Swen C. and Schulze, Ernst-Detlef and Sikorski, Johannes and Tschapka, Marco and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Wemheuer, Bernd and Wubet, Tesfaye and Ammer, Christian}, title = {The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {55}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12950}, pages = {267 -- 278}, year = {2017}, abstract = {1. For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged (UEA) management over more traditional coarse-grained even-aged (EA) management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. 2. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The EA (coarse-grained management) and UEA (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20years. We used diversity accumulation curves to compare -diversity for Hill numbers D-0 (species richness), D-1 (Shannon diversity) and D-2 (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. 3. Gamma diversity was higher in EA than in UEA forests for at least one of the three Hill numbers for six taxa (up to 77\%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher -diversity in EA forests was also found for forest specialists and saproxylic beetles. 4. Between-stand -diversity was higher in EA than in UEA forests for one-third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while -diversity showed no directional response across taxa or for forest specialists. 5. Synthesis and applications. Comparing EA and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape-scale biodiversity.}, language = {en} } @article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{CodorniuHernandezHallBoeseetal.2015, author = {Codorniu-Hernandez, Edelsys and Hall, Kyle Wm. and Boese, Adrian Daniel and Ziemianowicz, Daniel and Carpendale, Sheelagh and Kusalik, Peter G.}, title = {Mechanism of O(P-3) Formation from a Hydroxyl Radical Pair in Aqueous Solution}, series = {Journal of chemical theory and computation}, volume = {11}, journal = {Journal of chemical theory and computation}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.5b00783}, pages = {4740 -- 4748}, year = {2015}, abstract = {The reaction mechanism for the rapid formation of a triplet oxygen atom, O(P-3), from a pair of triplet-state hydroxyl radicals in liquid water is explored utilizing extensive Car-Parrinello MD simulations and advanced visualization techniques. The local solvation structures, the evolution of atomic charges, atomic separations, spin densities, electron localization functions, and frontier molecular orbitals, as well as free energy profiles, evidence that the reaction proceeds through a hybrid (hydrogen atom transfer and electron proton transfer) and hemibond-assisted reaction mechanism. A benchmarking study utilizing high-level ab initio calculations to examine the interactions of a hydroxyl radical pair in the gas phase and the influence of a hemibonded water is also provided. The results presented here should serve as a foundation for further experimental and theoretical studies aimed at better understanding the role and potential applications of the triplet oxygen atom as a potent reactive oxygen species.}, language = {en} } @article{BanksNishiyamaHasebeetal.2011, author = {Banks, Jo Ann and Nishiyama, Tomoaki and Hasebe, Mitsuyasu and Bowman, John L. and Gribskov, Michael and dePamphilis, Claude and Albert, Victor A. and Aono, Naoki and Aoyama, Tsuyoshi and Ambrose, Barbara A. and Ashton, Neil W. and Axtell, Michael J. and Barker, Elizabeth and Barker, Michael S. and Bennetzen, Jeffrey L. and Bonawitz, Nicholas D. and Chapple, Clint and Cheng, Chaoyang and Correa, Luiz Gustavo Guedes and Dacre, Michael and DeBarry, Jeremy and Dreyer, Ingo and Elias, Marek and Engstrom, Eric M. and Estelle, Mark and Feng, Liang and Finet, Cedric and Floyd, Sandra K. and Frommer, Wolf B. and Fujita, Tomomichi and Gramzow, Lydia and Gutensohn, Michael and Harholt, Jesper and Hattori, Mitsuru and Heyl, Alexander and Hirai, Tadayoshi and Hiwatashi, Yuji and Ishikawa, Masaki and Iwata, Mineko and Karol, Kenneth G. and Koehler, Barbara and Kolukisaoglu, Uener and Kubo, Minoru and Kurata, Tetsuya and Lalonde, Sylvie and Li, Kejie and Li, Ying and Litt, Amy and Lyons, Eric and Manning, Gerard and Maruyama, Takeshi and Michael, Todd P. and Mikami, Koji and Miyazaki, Saori and Morinaga, Shin-ichi and Murata, Takashi and M{\"u}ller-R{\"o}ber, Bernd and Nelson, David R. and Obara, Mari and Oguri, Yasuko and Olmstead, Richard G. and Onodera, Naoko and Petersen, Bent Larsen and Pils, Birgit and Prigge, Michael and Rensing, Stefan A. and Mauricio Riano-Pachon, Diego and Roberts, Alison W. and Sato, Yoshikatsu and Scheller, Henrik Vibe and Schulz, Burkhard and Schulz, Christian and Shakirov, Eugene V. and Shibagaki, Nakako and Shinohara, Naoki and Shippen, Dorothy E. and Sorensen, Iben and Sotooka, Ryo and Sugimoto, Nagisa and Sugita, Mamoru and Sumikawa, Naomi and Tanurdzic, Milos and Theissen, Guenter and Ulvskov, Peter and Wakazuki, Sachiko and Weng, Jing-Ke and Willats, William W. G. T. and Wipf, Daniel and Wolf, Paul G. and Yang, Lixing and Zimmer, Andreas D. and Zhu, Qihui and Mitros, Therese and Hellsten, Uffe and Loque, Dominique and Otillar, Robert and Salamov, Asaf and Schmutz, Jeremy and Shapiro, Harris and Lindquist, Erika and Lucas, Susan and Rokhsar, Daniel and Grigoriev, Igor V.}, title = {The selaginella genome identifies genetic changes associated with the evolution of vascular plants}, series = {Science}, volume = {332}, journal = {Science}, number = {6032}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1203810}, pages = {960 -- 963}, year = {2011}, abstract = {Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.}, language = {en} } @book{MientusKlempinNowaketal.2023, author = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna and Wyss, Corinne and Aufschnaiter, Claudia von and Faix, Ann-Christin and te Poel, Kathrin and Wahbe, Nadia and Pieper, Martin and H{\"o}ller, Katharina and Kallenbach, Lea and F{\"o}rster, Magdalena and Redecker, Anke and Dick, Mirjam and Holle, J{\"o}rg and Schneider, Edina and Rehfeldt, Daniel and Brauns, Sarah and Abels, Simone and Ferencik-Lehmkuhl, Daria and Fr{\"a}nkel, Silvia and Frohn, Julia and Liebsch, Ann-Catherine and Pech, Detlef and Schreier, Pascal and Jessen, Moiken and Großmann, Uta and Skintey, Lesya and Voerkel, Paul and Vaz Ferreira, Mergenfel A. and Zimmermann, Jan-Simon and Buddeberg, Magdalena and Henke, Vanessa and Hornberg, Sabine and V{\"o}lschow, Yvette and Warrelmann, Julia-Nadine and Malek, Jennifer and Tinnefeld, Anja and Schmidt, Peggy and Bauer, Tobias and J{\"a}nisch, Christopher and Spitzer, Lisa and Franken, Nadine and Degeling, Maria and Preisfeld, Angelika and Meier, Jana and K{\"u}th, Simon and Scholl, Daniel and Vogelsang, Christoph and Watson, Christina and Weißbach, Anna and Kulgemeyer, Christoph and Oetken, Mandy and Gorski, Sebastian and Kubsch, Marcus and Sorge, Stefan and Wulff, Peter and Fellenz, Carolin D. and Schnell, Susanne and Larisch, Cathleen and Kaiser, Franz and Knott, Christina and Reimer, Stefanie and Stegm{\"u}ller, Nathalie and Boukray{\^a}a Trabelsi, Kathrin and Schißlbauer, Franziska and Lemberger, Lukas and Barth, Ulrike and Wiehl, Angelika and Rogge, Tim and B{\"o}hnke, Anja and Dietz, Dennis and Großmann, Leroy and Wienmeister, Annett and Zoppke, Till and Jiang, Lisa and Gr{\"u}nbauer, Stephanie and Ostersehlt, D{\"o}rte and Peukert, Sophia and Sch{\"a}fer, Christoph and L{\"o}big, Anna and Br{\"o}ll, Leena and Brandt, Birgit and Breuer, Meike and Dausend, Henriette and Krelle, Michael and Andersen, Gesine and Falke, Sascha and Kindermann-G{\"u}zel, Kristin and K{\"o}rner, Katrina and Lottermoser, Lisa-Marie and P{\"u}gner, Kati and Sonnenburg, Nadine and Akarsu, Selim and Rechl, Friederike and Gadinger, Laureen and Heinze, Lena and Wittmann, Eveline and Franke, Manuela and Lachmund, Anne-Marie and B{\"o}ttger, Julia and Hannover, Bettina and Behrendt, Renata and Conty, Valentina and Grundmann, Stephanie and Ghassemi, Novid and Opitz, Ben and Br{\"a}mer, Martin and Gasparjan, David and Sambanis, Michaela and K{\"o}ster, Hilde and L{\"u}cke, Martin and Nordmeier, Volkhard and Schaal, Sonja and Haberbosch, Maximilian and Meissner, Maren and Schaal, Steffen and Br{\"u}chner, Melanie and Riehle, Tamara and Leopold, Bengta Marie and Gerlach, Susanne and Rau-Patschke, Sarah and Skorsetz, Nina and Weber, Nadine and Damk{\"o}hler, Jens and Elsholz, Markus and Trefzger, Thomas and Lewek, Tobias and Borowski, Andreas}, title = {Reflexion in der Lehrkr{\"a}ftebildung}, series = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, journal = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-59171}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591717}, publisher = {Universit{\"a}t Potsdam}, pages = {452}, year = {2023}, abstract = {Reflexion ist eine Schl{\"u}sselkategorie f{\"u}r die professionelle Entwicklung von Lehrkr{\"a}ften, welche als Ausbildungsziel in den Bildungsstandards f{\"u}r die Lehrkr{\"a}ftebildung verankert ist. Eine Verstetigung universit{\"a}r gepr{\"a}gter Forschung und Modellierung in der praxisnahen Anwendung im schulischen Kontext bietet Potentiale nachhaltiger Professionalisierung. Die St{\"a}rkung reflexionsbezogener Kompetenzen durch Empirie und Anwendung scheint eine phasen{\"u}bergreifende Herausforderung der Lehrkr{\"a}ftebildung zu sein, die es zu bew{\"a}ltigen gilt. Ziele des Tagungsbandes Reflexion in der Lehrkr{\"a}ftebildung sind eine theoretische Sch{\"a}rfung des Konzeptes „Reflexive Professionalisierung" und der Austausch {\"u}ber Fragen der Einbettung wirksamer reflexionsbezogener Lerngelegenheiten in die Lehrkr{\"a}ftebildung. Forschende und Lehrende der‚ drei Phasen (Studium, Referendariat sowie Fort- und Weiterbildung) der Lehrkr{\"a}ftebildung stellen Lehrkonzepte und Forschungsprojekte zum Thema Reflexion in der Lehrkr{\"a}ftebildung vor und diskutieren diese. Gemeinsam mit Teilnehmenden aller Phasen und von verschiedenen Standorten der Lehrkr{\"a}ftebildung werden zuk{\"u}nftige Herausforderungen identifiziert und L{\"o}sungsans{\"a}tze herausgearbeitet.}, language = {de} } @misc{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, Konrad and Birsin, E. and Biteau, Jonathan and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chakraborty, Nachiketa and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, Claire and Cui, Yudong and Davids, Isak Delberth and Degrange, Bernhard and Deil, Christoph and deWilt, P. and Djannati-Ata{\"i}, A. and Domainko, Wilfried and Donath, Axel and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, Tanya and Egberts, Kathrin and Eger, Peter and Espigat, P. and Farnier, C. and Fegan, Stephen and Feinstein, Fabrice and Fernandes, Milton Virgilio and Fernandez, Diane and Fiasson, A. and Fontaine, Gerard and F{\"o}rster, Andreas and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Yves A. and Garrigoux, Tania and Giavitto, G. and Giebels, Berrie and Glicenstein, Jean-Francois and Gottschall, Daniel and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Haeffner, S. and Hahn, Joachim and Harris, Jonathan and Heinzelmann, G{\"o}tz and Henri, G. and Hermann, German and Hervet, O. and Hillert, Andreas and Hinton, James Anthony and Hofmann, Werner and Hofverberg, Petter and Holler, Markus and Horns, Dieter and Ivascenko, Alex and Jacholkowska, A. and Jahn, C. and Jamrozy, Marek and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, Max Anton and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, Michel and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, David and Komin, Nu and Kosack, Karl and Krakau, Steffen and Krayzel, F. and Krueger, Pat P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lefranc, Valentin and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, Thomas and Lopatin, A. and Lu, Chia-Chun and Marandon, Vincent and Marcowith, Alexandre and Marx, Ramin and Maurin, G. and Maxted, Nigel and Mayer, Michael and McComb, T. J. Lowry and Mehault, J. and Meintjes, P. J. and Menzler, Ulf and Meyer, M. and Mitchell, Alison M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, Thomas and de Naurois, Mathieu and Niemiec, J. and Nolan, Sam J. and Oakes, Louise and Odaka, Hirokazu and Ohm, S. and Optiz, Bj{\"o}rn and Ostrowski, Michal and Oya, I. and Panter, Michael and Parsons, R. Daniel and Arribas, M. Paz and Pekeur, Nikki W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and P{\"u}hlhofer, Gerd and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, Anita and Reimer, Olaf and Renaud, Metz and de los Reyes, Raquel and Rieger, Frank and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, Vardan and Salek, D. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, Reinhard and Schuessler, F. and Schulz, A. and Schwanke, Ullrich and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spanier, Felix and Spengler, G. and Spies, Franziska and Stawarz, Lukasz and Steenkamp, Riaan and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, Georges and Veh, J. and Venter, Christo and Viana, Aion and Vincent, P. and Vink, Jacco and V{\"o}lk, Heinrich J. and Volpe, Francesca and Vorster, Martine and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, Martin and Weidinger, Matthias and Weitzel, Quirin and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, Ruizhi and Zabalza, Victor and Zaborov, Dmitry and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, Hannes -S.}, title = {H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud (vol 574, A100, 2015)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {580}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201425070e}, pages = {2}, year = {2015}, language = {en} } @article{AllanBossdorfDormannetal.2014, author = {Allan, Eric and Bossdorf, Oliver and Dormann, Carsten F. and Prati, Daniel and Gossner, Martin M. and Tscharntke, Teja and Bl{\"u}thgen, Nico and Bellach, Michaela and Birkhofer, Klaus and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Chatzinotas, Antonis and Christ, Sabina and Daniel, Rolf and Diek{\"o}tter, Tim and Fischer, Christiane and Friedl, Thomas and Glaser, Karin and Hallmann, Christine and Hodac, Ladislav and H{\"o}lzel, Norbert and Jung, Kirsten and Klein, Alexandra-Maria and Klaus, Valentin H. and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Nacke, Heiko and Pasalic, Esther and Rillig, Matthias C. and Rothenwoehrer, Christoph and Schally, Peter and Scherber, Christoph and Schulze, Waltraud X. and Socher, Stephanie A. and Steckel, Juliane and Steffan-Dewenter, Ingolf and T{\"u}rke, Manfred and Weiner, Christiane N. and Werner, Michael and Westphal, Catrin and Wolters, Volkmar and Wubet, Tesfaye and Gockel, Sonja and Gorke, Martin and Hemp, Andreas and Renner, Swen C. and Sch{\"o}ning, Ingo and Pfeiffer, Simone and K{\"o}nig-Ries, Birgitta and Buscot, Francois and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W. and Fischer, Markus}, title = {Interannual variation in land-use intensity enhances grassland multidiversity}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {111}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {1}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1312213111}, pages = {308 -- 313}, year = {2014}, abstract = {Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18\% of the maximum diversity across all grasslands when LUI was static over time but increased to 31\% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.}, language = {en} } @article{ZoccaratoSherMikietal.2022, author = {Zoccarato, Luca and Sher, Daniel and Miki, Takeshi and Segre, Daniel and Grossart, Hans-Peter}, title = {A comparative whole-genome approach identifies bacterial traits for marine microbial interactions}, series = {Communications biology}, volume = {5}, journal = {Communications biology}, number = {1}, publisher = {Springer Nature}, address = {Berlin}, issn = {2399-3642}, doi = {10.1038/s42003-022-03184-4}, pages = {13}, year = {2022}, abstract = {Luca Zoccarato, Daniel Sher et al. leverage publicly available bacterial genomes from marine and other environments to examine traits underlying microbial interactions. Their results provide a valuable resource to investigate clusters of functional and linked traits to better understand marine bacteria community assembly and dynamics. Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10\% of genomes), phytohormones (3-8\%) and different B vitamins (57-70\%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.}, language = {en} } @article{PenoneAllanSoliveresetal.2019, author = {Penone, Caterina and Allan, Eric and Soliveres, Santiago and Felipe-Lucia, Maria R. and Gossner, Martin M. and Seibold, Sebastian and Simons, Nadja K. and Schall, Peter and van der Plas, Fons and Manning, Peter and Manzanedo, Ruben D. and Boch, Steffen and Prati, Daniel and Ammer, Christian and Bauhus, Juergen and Buscot, Francois and Ehbrecht, Martin and Goldmann, Kezia and Jung, Kirsten and Mueller, Joerg and Mueller, Joerg C. and Pena, Rodica and Polle, Andrea and Renner, Swen C. and Ruess, Liliane and Schoenig, Ingo and Schrumpf, Marion and Solly, Emily F. and Tschapka, Marco and Weisser, Wolfgang W. and Wubet, Tesfaye and Fischer, Markus}, title = {Specialisation and diversity of multiple trophic groups are promoted by different forest features}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13182}, pages = {170 -- 180}, year = {2019}, abstract = {While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation.}, language = {en} } @inproceedings{HofukuChoNishidaetal.2013, author = {Hofuku, Yayoi and Cho, Shinya and Nishida, Tomohiro and Kanemune, Susumu and Linck, Barbara and Kim, Seungyon and Park, Seongbin and Van{\´i}ček, Jiř{\´i} and Gujberov{\´a}, Monika and Tomcs{\´a}nyi, Peter and Dagiene, Valentina and Jevsikova, Tatjana and Schulte, Carsten and Sentance, Sue and Thota, Neena and G{\"u}lbahar, Yasemin and İlkhan, Mustafa and Kilis, Selcan and Arslan, Okan and Nakano, Yoshiaki and Izutsu, Katsunobu and Lessner, Daniel and Reffay, Christophe and Miled, Mahdi and Ortiz, Pascal and F{\´e}vrier, Lo{\"i}c and Grgurina, Nataša and Weise, Martin and Bellettini, Carlo and Lonati, Violetta and Malchiodi, Dario and Monga, Mattia and Morpurgo, Anna and Torelli, Mauro and Planteu, Lukas and Standl, Bernhard and Grossmann, Wilfried and Neuwirth, Erich and Benacka, Jan and Ragonis, Noa and Hodges, Steve and Berry, Carol and Kusterer, Peter}, title = {Informatics in schools : local proceedings of the 6th International Conference ISSEP 2013 ; selected papers ; Oldenburg, Germany, February 26-March 2, 2013}, editor = {Diethelm, Ira and Arndt, Jannik and D{\"u}nnebier, Malte and Syrbe, J{\"o}rn}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-222-3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63688}, pages = {162}, year = {2013}, abstract = {The International Conference on Informatics in Schools: Situation, Evolution and Perspectives - ISSEP - is a forum for researchers and practitioners in the area of Informatics education, both in primary and secondary schools. It provides an opportunity for educators to reflect upon the goals and objectives of this subject, its curricula and various teaching/learning paradigms and topics, possible connections to everyday life and various ways of establishing Informatics Education in schools. This conference also cares about teaching/learning materials, various forms of assessment, traditional and innovative educational research designs, Informatics' contribution to the preparation of children for the 21st century, motivating competitions, projects and activities supporting informatics education in school.}, language = {en} } @article{AlmathenCharruauMohandesanetal.2016, author = {Almathen, Faisal and Charruau, Pauline and Mohandesan, Elmira and Mwacharo, Joram M. and Orozco-terWengel, Pablo and Pitt, Daniel and Abdussamad, Abdussamad M. and Uerpmann, Margarethe and Uerpmann, Hans-Peter and De Cupere, Bea and Magee, Peter and Alnaqeeb, Majed A. and Salim, Bashir and Raziq, Abdul and Dessie, Tadelle and Abdelhadi, Omer M. and Banabazi, Mohammad H. and Al-Eknah, Marzook and Walzer, Chris and Fayer, Bernard and Hofreiter, Michael and Peters, Joris and Hanotte, Olivier and Burger, Pamela A.}, title = {Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {113}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1519508113}, pages = {6707 -- 6712}, year = {2016}, abstract = {Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species' range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the "restocking from the wild" hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments.}, language = {en} } @article{HosseinzadehCowperthwaiteGomezetal.2019, author = {Hosseinzadeh, Griffin and Cowperthwaite, Philip S. and Gomez, Sebastian and Villar, Victoria Ashley and Nicholl, Matt and Margutti, Raffaella and Berger, Edo and Chornock, Ryan and Paterson, Kerry and Fong, Wen-fai and Savchenko, Volodymyr and Short, Phil and Alexander, Kate D. and Blanchard, Peter K. and Braga, Joao and Calkins, Michael L. and Cartier, Regis and Coppejans, Deanne L. and Eftekhari, Tarraneh and Laskar, Tanmoy and Ly, Chun and Patton, Locke and Pelisoli, Ingrid Domingos and Reichart, Daniel E. and Terreran, Giacomo and Williams, Peter K. G.}, title = {Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {880}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ab271c}, pages = {14}, year = {2019}, abstract = {On 2019 April 25.346 and 26.640 UT the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo gravitational-wave (GW) observatory announced the detection of the first candidate events in Observing Run 3 that contained at least one neutron star (NS). S190425z is a likely binary neutron star (BNS) merger at d(L) = 156 +/- 41 Mpc, while S190426c is possibly the first NS-black hole (BH) merger ever detected, at d(L) = 377 +/- 100 Mpc, although with marginal statistical significance. Here we report our optical follow-up observations for both events using the MMT 6.5 m telescope, as well as our spectroscopic follow-up of candidate counterparts (which turned out to be unrelated) with the 4.1 m SOAR telescope. We compare to publicly reported searches, explore the overall areal coverage and depth, and evaluate those in relation to the optical/near-infrared (NIR) kilonova emission from the BNS merger GW170817, to theoretical kilonova models, and to short gamma-ray burst (SGRB) afterglows. We find that for a GW170817-like kilonova, the partial volume covered spans up to about 40\% for S190425z and 60\% for S190426c. For an on-axis jet typical of SGRBs, the search effective volume is larger, but such a configuration is expected in at most a few percent of mergers. We further find that wide-field gamma-ray and X-ray limits rule out luminous on-axis SGRBs, for a large fraction of the localization regions, although these searches are not sufficiently deep in the context of the gamma-ray emission from GW170817 or off-axis SGRB afterglows. The results indicate that some optical follow-up searches are sufficiently deep for counterpart identification to about 300 Mpc, but that localizations better than 1000 deg(2) are likely essential.}, language = {en} } @article{CarrapaReyesBywaterSafipouretal.2014, author = {Carrapa, Barbara and Reyes-Bywater, Sharon and Safipour, Roxana and Sobel, Edward and Schoenbohm, Lindsay M. and DeCelles, Peter G. and Reiners, Peter W. and Stockli, Daniel}, title = {The effect of inherited paleotopography on exhumation of the Central Andes of NW Argentina}, series = {Geological Society of America bulletin}, volume = {126}, journal = {Geological Society of America bulletin}, number = {1-2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30844.1}, pages = {66 -- 77}, year = {2014}, abstract = {Differential exhumation in the Puna Plateau and Eastern Cordillera of NW Argentina is controlled by inherited paleostructures and resulting paleotopography related to the Cretaceous Salta Rift paleomargins. The Ceno zoic deformation front related to the development of the Andean retro-arc orogenic system is generally associated with >4 km of exhumation, which is recorded by Cenozoic apatite fi ssion-track (AFT) and (U-Th-[Sm])/He ages (He ages) in the Eastern Cordillera of NW Argentina. New AFT ages from the top of the Nevado de Cachi document Oligocene (ca. 28 Ma) cooling, which, combined with existing data, indicates exhumation of this range between ca. 28 Ma and ca. 14 Ma. However, some of the highest ranges in the Eastern Cordillera preserve Cretaceous ages indicative of limited Cenozoic exhumation. Samples collected from an similar to 3-km-elevation transect along the northern part of the Sierra de Quilmes paleorift fl ank (Laguna Brava) show AFT ages between ca. 80 and ca. 50 Ma and He ages between ca. 45 and ca. 10 Ma. Another set of samples from an similar to 1-km-elevation transect farther to the southwest (La Quebrada) shows Cretaceous AFT ages between ca. 116 Ma and ca. 76 Ma, and mainly Cretaceous He ages, in agreement with AFT data. Analysis of existing AFT and He ages from the area once occupied by the Salta Rift reveals a pattern characterized by Cretaceous ages along paleorift highs and Cenozoic ages within paleorift hanging-wall basins and later foreland basin depocenters. This pattern is interrupted by the Sierras Pampeanas at similar to 28 degrees S, which record mid-Cenozoic ages. Our data are consistent with a complex inherited pattern of pre-Andean paleostructures, likely associated with paleotopography, which was beveled by the Cenozoic regional foreland basin and reactivated during the late Neogene (ca. <10 Ma), strongly controlling the magnitude of Cenozoic uplift and exhumation and thus cooling age distribution. This, combined with variable lithologic erodibility, resulted in an irregular distribution of themochronological ages.}, language = {en} } @article{YildirimSchildgenEchtleretal.2013, author = {Yildirim, Cengiz and Schildgen, Taylor F. and Echtler, Helmut Peter and Melnick, Daniel and Bookhagen, Bodo and Ciner, T. Attila and Niedermann, Samuel and Merchel, Silke and Martschini, Martin and Steier, Peter and Strecker, Manfred}, title = {Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20066}, pages = {1107 -- 1120}, year = {2013}, abstract = {We document Quaternary fluvial incision driven by fault-controlled surface deformation in the inverted intermontane G{\"o}kirmak Basin in the Central Pontide mountains along the northern margin of the Central Anatolian Plateau. In-situ-produced Be-10, Ne-21, and Cl-36 concentrations from gravel-covered fluvial terraces and pediment surfaces along the trunk stream of the basin (the G{\"o}kirmak River) yield model exposure ages ranging from 71ka to 34645ka and average fluvial incision rates over the past similar to 350ka of 0.280.01mm a(-1). Similarities between river incision rates and coastal uplift rates at the Black Sea coast suggest that regional uplift is responsible for the river incision. Model exposure ages of deformed pediment surfaces along tributaries of the trunk stream range from 605ka to 110 +/- 10ka, demonstrating that the thrust faults responsible for pediment deformation were active after those times and were likely active earlier as well as explaining the topographic relief of the region. Together, our data demonstrate cumulative incision that is linked to active internal shortening and uplift of similar to 0.3mm a(-1) in the Central Pontide orogenic wedge, which may ultimately contribute to the lateral growth of the northern Anatolian Plateau.}, language = {en} } @article{LundgreenJaspersTravingetal.2019, author = {Lundgreen, Regitze B. C. and Jaspers, Cornelia and Traving, Sachia J. and Ayala, Daniel J. and Lombard, Fabien and Grossart, Hans-Peter and Nielsen, Torkel G. and Munk, Peter and Riemann, Lasse}, title = {Eukaryotic and cyanobacterial communities associated with marine snow particles in the oligotrophic Sargasso Sea}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-45146-7}, pages = {12}, year = {2019}, abstract = {Marine snow aggregates represent heterogeneous agglomerates of dead and living organic matter. Composition is decisive for their sinking rates, and thereby for carbon flux to the deep sea. For oligotrophic oceans, information on aggregate composition is particularly sparse. To address this, the taxonomic composition of aggregates collected from the subtropical and oligotrophic Sargasso Sea (Atlantic Ocean) was characterized by 16S and 18S rRNA gene sequencing. Taxonomy assignment was aided by a collection of the contemporary plankton community consisting of 75 morphologically and genetically identified plankton specimens. The diverse rRNA gene reads of marine snow aggregates, not considering Trichodesmium puffs, were dominated by copepods (52\%), cnidarians (21\%), radiolarians (11\%), and alveolates (8\%), with sporadic contributions by cyanobacteria, suggesting a different aggregate composition than in eutrophic regions. Composition linked significantly with sampling location but not to any measured environmental parameters or plankton biomass composition. Nevertheless, indicator and network analyses identified key roles of a few rare taxa. This points to complex regulation of aggregate composition, conceivably affected by the environment and plankton characteristics. The extent to which this has implications for particle densities, and consequently for sinking rates and carbon sequestration in oligotrophic waters, needs further interrogation.}, language = {en} } @article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{SchulzeMakuchWagnerKounavesetal.2018, author = {Schulze-Makuch, Dirk and Wagner, Dirk and Kounaves, Samuel P. and Mangelsdorf, Kai and Devine, Kevin G. and de Vera, Jean-Pierre and Schmitt-Kopplin, Philippe and Grossart, Hans-Peter and Parro, Victor and Kaupenjohann, Martin and Galy, Albert and Schneider, Beate and Airo, Alessandro and Froesler, Jan and Davila, Alfonso F. and Arens, Felix L. and Caceres, Luis and Cornejo, Francisco Solis and Carrizo, Daniel and Dartnell, Lewis and DiRuggiero, Jocelyne and Flury, Markus and Ganzert, Lars and Gessner, Mark O. and Grathwohl, Peter and Guan, Lisa and Heinz, Jacob and Hess, Matthias and Keppler, Frank and Maus, Deborah and McKay, Christopher P. and Meckenstock, Rainer U. and Montgomery, Wren and Oberlin, Elizabeth A. and Probst, Alexander J. and Saenz, Johan S. and Sattler, Tobias and Schirmack, Janosch and Sephton, Mark A. and Schloter, Michael and Uhl, Jenny and Valenzuela, Bernardita and Vestergaard, Gisle and Woermer, Lars and Zamorano, Pedro}, title = {Transitory microbial habitat in the hyperarid Atacama Desert}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1714341115}, pages = {2670 -- 2675}, year = {2018}, language = {en} } @article{GuerreroRamirezCravenReichetal.2017, author = {Guerrero-Ramirez, Nathaly Rokssana and Craven, Dylan and Reich, Peter B. and Ewel, John J. and Isbell, Forest and Koricheva, Julia and Parrotta, John A. and Auge, Harald and Erickson, Heather E. and Forrester, David I. and Hector, Andy and Joshi, Jasmin Radha and Montagnini, Florencia and Palmborg, Cecilia and Piotto, Daniel and Potvin, Catherine and Roscher, Christiane and van Ruijven, Jasper and Tilman, David and Wilsey, Brian and Eisenhauer, Nico}, title = {Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems}, series = {Nature ecology \& evolution}, volume = {1}, journal = {Nature ecology \& evolution}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-017-0325-1}, pages = {1639 -- 1642}, year = {2017}, abstract = {The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.}, language = {en} } @article{MuellerBochPratietal.2018, author = {M{\"u}ller, J{\"o}rg and Boch, Steffen and Prati, Daniel and Socher, Stephanie A. and Pommer, Ulf and Hessenm{\"o}ller, Dominik and Schall, Peter and Schulze, Ernst Detlef and Fischer, Markus}, title = {Effects of forest management on bryophyte species richness in Central European forests}, series = {Forest ecology and management}, volume = {432}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.10.019}, pages = {850 -- 859}, year = {2018}, abstract = {We studied the effect of three major forest management types (unmanaged beech, selection beech, and age class forests) and stand variables (SMId, soil pH, proportion of conifers, litter cover, deadwood cover, rock cover and cumulative cover of woody trees and shrubs) on bryophyte species richness in 1050 forest plots in three regions in Germany. In addition, we analysed the species richness of four ecological guilds of bryophytes according to their colonized substrates (deadwood, rock, soil, bark) and the number of woodland indicator bryophyte species. Beech selection forests turned out to be the most species rich management type, whereas unmanaged beech forests revealed even lower species numbers than age-class forests. Increasing conifer proportion increased bryophyte species richness but not the number of woodland indicator bryophyte species. The richness of the four ecological guilds mainly responded to the abundance of their respective substrate. We conclude that the permanent availability of suitable substrates is most important for bryophyte species richness in forests, which is not stringently linked to management type. Therefore, managed age-class forests and selection forests may even exceed unmanaged forests in bryophyte species richness due to higher substrate supply and therefore represent important habitats for bryophytes. Typical woodland indicator bryophytes and their species richness were negatively affected by SMId (management intensity) and therefore better indicate forest integrity than the species richness of all bryophytes. Nature conservation efforts should focus on the reduction of management intensity. Moreover, maintaining and increasing a variability of substrates and habitats, such as coarse woody debris, increasing structural heterogeneity by retaining patches with groups of old, mature to over-mature trees in managed forests, maintaining forest climate conditions by silvicultural methods that assure stand continuity, e.g. by selection cutting rather than clear cutting and shelterwood logging might promote bryophyte diversity and in particular the one of woodland indicator bryophytes.}, language = {en} } @article{BerrahSanchezGonzalezJureketal.2019, author = {Berrah, N. and S{\´a}nchez-Gonz{\´a}lez, {\´A}lvaro and Jurek, Zoltan and Obaid, Razib and Xiong, H. and Squibb, R. J. and Osipov, T. and Lutman, A. and Fang, L. and Barillot, T. and Bozek, J. D. and Cryan, J. and Wolf, T. J. A. and Rolles, Daniel and Coffee, R. and Schnorr, Kirsten and Augustin, S. and Fukuzawa, Hironobu and Motomura, K. and Niebuhr, Nina Isabelle and Frasinski, L. J. and Feifel, Raimund and Schulz, Claus-Peter and Toyota, Kenji and Son, Sang-Kil and Ueda, K. and Pfeifer, T. and Marangos, J. P. and Santra, Robin}, title = {Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization}, series = {Nature physics}, volume = {15}, journal = {Nature physics}, number = {12}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, doi = {10.1038/s41567-019-0665-7}, pages = {1279 -- 1301}, year = {2019}, abstract = {X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C-60), exposed to 640 eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20 fs) X-ray pump pulse, the fragmentation of C-60 is considerably delayed. This work uncovers the persistence of the molecular structure of C-60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules.}, language = {en} } @article{HarlovTropperSeifertetal.2006, author = {Harlov, Daniel E. and Tropper, Peter and Seifert, Wolfgang and Nijland, Timo and F{\"o}rster, Hans-J{\"u}rgen}, title = {Formation of Al-rich titanite (CaTiSiO4O-CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH(2)O and fO(2)}, issn = {0024-4937}, doi = {10.1016/j.lithos.2005.08.005}, year = {2006}, abstract = {Reaction rims of titanite on ilmenite are described in samples from four terranes of amphibolite-facies metapelites and amphibolites namely the Tamil Nadu area, southern India; the Val Strona, area of the Ivrea-Verbano Zone, northern Italy, the Bamble Sector, southern Norway, and the northwestern Austroalpine Otztal Complex. The titanite rims, and hence the stability of titanite (CaTiSiO4O) and Al-OH titanite, i.e. vuaganatite (hypothetical end-member CaAlSiO4OH), are discussed in the light of fH(2)O- and fO(2)-buffered equilibria involving clinopyroxene, amphibole, biotite, ilmenite, magnetite, and quartz in the systems CaO-FeO/Fe2O3-TiO2-SiO2-H2O-O-2 (CFTSH) and CaO-FeO/Fe2O3-Al2O3- SiO2-H2O-O-2 (CFASH) present in each of the examples. Textural evidence suggests that titanite reaction rims on ilmenite in rocks from Tamil Nadu, Val Strona, and the Bamble Sector originated most likely due to hydration reactions such as clinopyroxene + ilmenite +quartz+ H2O = amphibole +titanite and oxidation reactions such as amphibole + ilmenite + O-2 = titanite + magnetite + quartz + H2O during amphibolite-facies metamorphism, or, as in the case of the Otztal Complex, during a subsequent greenschist-facies overprint. Overstepping of these reactions requires fH(2)O and fO(2) to be high for titanite formation, which is also in accordance with equilibria involving Al-OH titanite. This study shows that, in addition to P, T, bulk-rock composition and composition of the coexisting fluid, fO(2) and fH(2)O also play an important role in the formation of Al-bearing titanite during amphibolite- and greenschist-facies metamorphism.}, language = {en} } @book{JesselFischerHueftleJennyetal.2003, author = {Jessel, Beate and Fischer-H{\"u}ftle, Peter and Jenny, Daniel and Zschalich, Andrea}, title = {Erarbeitung von Ausgleichs- und Ersatzmaßnahmen f{\"u}r Beeintr{\"a}chtigungen des Landschaftsbildes : Ergebnisse aus dem F+E-Vorhaben 89982130 des Bundesamtes f{\"u}r Naturschutz}, series = {Angewandte Landschafts{\"o}kologie}, volume = {53}, journal = {Angewandte Landschafts{\"o}kologie}, publisher = {Bundesamt f{\"u}r Naturschutz}, address = {Bonn-Bad Godesberg}, isbn = {3-7843-3732-5}, pages = {294 S. + 1 CD-ROM}, year = {2003}, abstract = {Auch nach {\"u}ber 25 Jahren Anwendung der Eingriffsregelung nehmen landschafts{\"a}sthetische Aspekte h{\"a}ufig noch eine deutlich schw{\"a}chere Stellung gegen{\"u}ber den Belangen des Naturhaushalts ein. Als besonders schwierig erweist sich die Erfassung und Bewertung des Landschaftsbildes und - ausgehend von den konkreten Beeintr{\"a}chtigungen, die vom Vorhaben ausgehen - die Ableitung wirkungsbezogener Kompensationsmaßnahmen. Mit der vorliegenden Ver{\"o}ffentlichung wird eine Handlungsanleitung zur Erfassung und Beschreibung des Landschaftsbildes vorgelegt, die insbesondere auf eine schl{\"u}ssige Begr{\"u}ndung und Herleitung von Vorkehrungen zur Vermeidung sowie von Ausgleichs- und Ersatzmaßnahmen zur landschaftsgerechten Wiederhertsellung und Neugestaltung des Landschaftsbildes abzielt. Wesentlich ist, dass dabei der notwendige Bezug auf die Charakteristik des jeweiligen Landschaftsraums im Vordergrund steht. Daneben werden die Einsetzbarkeit verschiedener Methoden der Landschaftsvisualisierung im Arbeitsablauf der Eingriffsregelung beleuchtet, Hinweise f{\"u}r entsprechende Standards begr{\"u}ndet sowie Empfehlungen f{\"u}r Nachkontrollen von Kompensationsmaßnahmen begr{\"u}ndet.}, language = {de} } @misc{BlastenbreiDubrauEinsteinetal.2005, author = {Blastenbrei, Peter and Dubrau, Alexander and Einstein, Alfred and Emberger, Helga and Ferber, Ruvin and Gr{\"o}zinger, Elvira and Gr{\"o}zinger, Karl E. and Kuh, Emil and Hess, Tim and J{\"u}tte, Daniel and Riemer, Nathanael and Voigts, Manfred}, title = {PaRDeS : Informationsblatt der Vereinigung f{\"u}r j{\"u}dische Studien e.V.}, number = {10}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, organization = {Vereinigung f{\"u}r j{\"u}dische Studien e.V.}, issn = {1614-6492}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-20018}, year = {2005}, abstract = {Inhalt: Editorial Artikel und Miszellen Peter Blastenbrei: Ein Pionier des christlich-j{\"u}dischen Zusammenlebens. Johann Christoph Wagenseil zum 300. Todestag. Daniel J{\"u}tte: Judendarstellungen in der Musik. Ein vergessener Text Alfred Einsteins. Alfred Einstein: Der Jude in der Musik. Helga Embacher: Neuer Antisemitismus und Antiamerikanismus in Europa. Tagungen Ak: Nicht ihr Freund, aber auch nicht ihr Feind. Zum Verh{\"a}ltnis von Goethe und Schiller zu Juden und Judentum. Rezensionen Die Gegenwart der Kabbala - Sammelrezension neu aufgelegter kabbalistischer Werke (Karl E. Gr{\"o}zinger) Moses Cordovero: Tomer Deborah. Der Palmbaum der Deborah. Eine mystische Ethik radikalen Erbarmens. (Nathanael Riemer) Die jiddischen Drucke der Bayerischen Staatsbibliothek. Alphabetischer Katalog mit einem Verfasserregister in hebr{\"a}ischer Schrift. (Nathanael Riemer) Simone L{\"a}ssig: J{\"u}dische Wege ins B{\"u}rgertum. Kulturelles Kapital und sozialer Aufstieg im 19. Jahrhundert. (Manfred Voigts) Franz Kafka: Die Amtlichen Schriften. (Tim Hess) Karl Kraus. Jicinsky rod{\"a}k a svetoobcan. In Jicin geboren, in der Welt zuhause. (Tim Hess) Christina Pereigis: „trogt zikh a gezang..." Jiddische Liedlyrik aus den Jahren 1939-1945. (Elvira Gr{\"o}zinger) Jakob Hessing: Mir soll's geschehen. (Alexander Dubrau) J{\"u}dische Studien in der Welt - Nachrichten Ruvin Ferber: Center for Judaic Studies at the University of Latvia Veranstaltungen, Hinweise und Korrekturen R{\"u}ckblicke Emil Kuh: J{\"u}dische Legende Autorinnen und Autoren dieses Heftes}, language = {de} } @article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @article{EigmuellerChaushevGillenetal.2019, author = {Eigm{\"u}ller, Philipp and Chaushev, Alexander and Gillen, Edward and Smith, Alexis and Nielsen, Louise D. and Turner, Oliver and Csizmadia, Szilard and Smalley, Barry and Bayliss, Daniel and Belardi, Claudia and Bouchy, Francois and Burleigh, Matthew R. and Cabrera, Juan and Casewell, Sarah L. and Chazelas, Bruno and Cooke, Benjamin F. and Erikson, Anders and Gansicke, Boris T. and Guenther, Maximilian N. and Goad, Michael R. and Grange, Andrew and Jackman, James A. G. and Jenkins, James S. and McCormac, James and Moyano, Maximiliano and Pollacco, Don and Poppenh{\"a}ger, Katja and Queloz, Didier and Raynard, Liam and Rauer, Heike and Udry, Stephane and Walker, Simon. R. and Watson, Christopher A. and West, Richard G. and Wheatley, Peter J.}, title = {NGTS-5b}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935206}, pages = {9}, year = {2019}, abstract = {Context. Planetary population analysis gives us insight into formation and evolution processes. For short-period planets, the sub-Jovian desert has been discussed in recent years with regard to the planet population in the mass/period and radius/period parameter space without taking stellar parameters into account. The Next Generation Transit Survey (NGTS) is optimised for detecting planets in this regime, which allows for further analysis of the sub-Jovian desert. Aims. With high-precision photometric surveys (e.g. with NGTS and TESS), which aim to detect short period planets especially around M/K-type host stars, stellar parameters need to be accounted for when empirical data are compared to model predictions. Presenting a newly discovered planet at the boundary of the sub-Jovian desert, we analyse its bulk properties and use it to show the properties of exoplanets that border the sub-Jovian desert. Methods. Using NGTS light curve and spectroscopic follow-up observations, we confirm the planetary nature of planet NGTS-5b and determine its mass. Using exoplanet archives, we set the planet in context with other discoveries. Results. NGTS-5b is a short-period planet with an orbital period of 3.3569866 +/- 0.0000026 days. With a mass of 0.229 +/- 0.037 M-Jup and a radius of 1.136 +/- 0.023 R-Jup, it is highly inflated. Its mass places it at the upper boundary of the sub-Jovian desert. Because the host is a K2 dwarf, we need to account for the stellar parameters when NGTS-5b is analysed with regard to planet populations. Conclusions. With red-sensitive surveys (e.g. with NGTS and TESS), we expect many more planets around late-type stars to be detected. An empirical analysis of the sub-Jovian desert should therefore take stellar parameters into account.}, language = {en} } @article{KoenigAblerAgartzetal.2020, author = {Koenig, Julian and Abler, Birgit and Agartz, Ingrid and akerstedt, Torbjorn and Andreassen, Ole A. and Anthony, Mia and Baer, Karl-Juergen and Bertsch, Katja and Brown, Rebecca C. and Brunner, Romuald and Carnevali, Luca and Critchley, Hugo D. and Cullen, Kathryn R. and de Geus, Eco J. C. and de la Cruz, Feliberto and Dziobek, Isabel and Ferger, Marc D. and Fischer, Hakan and Flor, Herta and Gaebler, Michael and Gianaros, Peter J. and Giummarra, Melita J. and Greening, Steven G. and Guendelman, Simon and Heathers, James A. J. and Herpertz, Sabine C. and Hu, Mandy X. and Jentschke, Sebastian and Kaess, Michael and Kaufmann, Tobias and Klimes-Dougan, Bonnie and Koelsch, Stefan and Krauch, Marlene and Kumral, Deniz and Lamers, Femke and Lee, Tae-Ho and Lekander, Mats and Lin, Feng and Lotze, Martin and Makovac, Elena and Mancini, Matteo and Mancke, Falk and Mansson, Kristoffer N. T. and Manuck, Stephen B. and Mather, Mara and Meeten, Frances and Min, Jungwon and Mueller, Bryon and Muench, Vera and Nees, Frauke and Nga, Lin and Nilsonne, Gustav and Ordonez Acuna, Daniela and Osnes, Berge and Ottaviani, Cristina and Penninx, Brenda W. J. H. and Ponzio, Allison and Poudel, Govinda R. and Reinelt, Janis and Ren, Ping and Sakaki, Michiko and Schumann, Andy and Sorensen, Lin and Specht, Karsten and Straub, Joana and Tamm, Sandra and Thai, Michelle and Thayer, Julian F. and Ubani, Benjamin and van Der Mee, Denise J. and van Velzen, Laura S. and Ventura-Bort, Carlos and Villringer, Arno and Watson, David R. and Wei, Luqing and Wendt, Julia and Schreiner, Melinda Westlund and Westlye, Lars T. and Weymar, Mathias and Winkelmann, Tobias and Wu, Guo-Rong and Yoo, Hyun Joo and Quintana, Daniel S.}, title = {Cortical thickness and resting-state cardiac function across the lifespan}, series = {Psychophysiology : journal of the Society for Psychophysiological Research}, volume = {58}, journal = {Psychophysiology : journal of the Society for Psychophysiological Research}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0048-5772}, doi = {10.1111/psyp.13688}, pages = {16}, year = {2020}, abstract = {Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting-state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5\% female), mean age 36.7 years (range: 12-87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS-or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between CT and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research.}, language = {en} } @article{ZollerBethBinosietal.2005, author = {Zoller, Peter and Beth, Thomas and Binosi, D. and Blatt, Rainer and Briegel, Hans J. and Bruss, D. and Calarco, Tommaso and Cirac, Juan Ignacio and Deutsch, David and Eisert, Jens and Ekert, Artur and Fabre, Claude and Gisin, Nicolas and Grangiere, P. and Grassl, Markus and Haroche, Serge and Imamoglu, Atac and Karlson, A. and Kempe, Julia and Kouwenhoven, Leo P. and Kr{\"o}ll, S. and Leuchs, Gerd and Lewenstein, Maciej and Loss, Daniel and L{\"u}tkenhaus, Norbert and Massar, Serge and Mooij, J. E. and Plenio, Martin Bodo and Polzik, Eugene and Popescu, Sandu and Rempe, Gerhard and Sergienko, Alexander and Suter, David and Twamley, John and Wendin, G{\"o}ran and Werner, Reinhard F. and Winter, Andreas and Wrachtrup, J{\"o}rg and Zeilinger, Anton}, title = {Quantum information processing and communication : Strategic report on current status, visions and goals for research in Europe}, issn = {1434-6060}, year = {2005}, abstract = {We present an excerpt of the document "Quantum Information Processing and Communication: Strategic report on current status, visions and goals for research in Europe", which has been recently published in electronic form at the website of FET (the Future and Emerging Technologies Unit of the Directorate General Information Society of the European Commission, http://www.cordis.lu/ist/fet/qipc-sr.htm). This document has been elaborated, following a former suggestion by FET, by a committee of QIPC scientists to provide input towards the European Commission for the preparation of the Seventh Framework Program. Besides being a document addressed to policy makers and funding agencies (both at the European and national level), the document contains a detailed scientific assessment of the state-of-the-art, main research goals, challenges, strengths, weaknesses, visions and perspectives of all the most relevant QIPC sub-fields, that we report here}, language = {en} } @article{BoeseSaalfrank2016, author = {Boese, Adrian Daniel and Saalfrank, Peter}, title = {CO Molecules on a NaCl(100) Surface: Structures, Energetics, and Vibrational Davydov Splittings at Various Coverages}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b03726}, pages = {12637 -- 12653}, year = {2016}, abstract = {In this work, we study the adsorption of CO from low to high coverage at a defect-free NaCl(100) surface by means of duster and periodic models, using highly accurate wave function-based QM:QM embedding as well as density functional theory. At low coverages, the most accurate methods predict a zero-point-corrected adsorption energy of around 13 kJ/mol, and the CO molecules are found to be oriented perpendicular to the surface. At higher coverages, lower-energy phases with nonparallel/upright, tilted orientations emerge. Besides the well-known p(2 x 1)/antiparallel phase (T/A), we find other tilted phases (tilted/irregular, T/I; tilted/spiral, T/S) as local minima. Vibrational frequencies for CO adsorbed on NaCl(100) and Davydov splittings of the C-O stretch vibration are also determined. The IR spectra are characteristic fingerprints for the relative orientation of CO molecules and may therefore be used as sensitive probes to distinguish parallel/upright from various tilted adsorption phases.}, language = {en} } @article{GrimmMeyerCzaplaetal.2013, author = {Grimm, Christiane and Meyer, Thomas and Czapla, Sylvia and Nikolaus, J{\"o}rg and Scheidt, Holger A. and Vogel, Alexander and Herrmann, Andreas and Wessig, Pablo and Huster, Daniel and M{\"u}ller, Peter}, title = {Structure and dynamics of molecular rods in membranes application of a Spin-Labeled rod}, series = {Chemistry - a European journal}, volume = {19}, journal = {Chemistry - a European journal}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201202500}, pages = {2703 -- 2710}, year = {2013}, abstract = {Molecular rods consisting of a hydrophobic backbone and terminally varying functional groups have been synthesized for applications for the functionalization of membranes. In the present study, we employ a spin-labeled analogue of a recently described new class of molecular rods to characterize their dynamic interactions with membranes. By using the different approaches of ESR and NMR spectroscopy, we show that the spin moiety of the membrane-embedded spin-labeled rod is localized in the upper chain/glycerol region of membranes of different compositions. The rod is embedded within the membrane in a tilted orientation to adjust for the varying hydrophobic thicknesses of these bilayers. This orientation does not perturb the membrane structure. The water solubility of the rod is increased significantly in the presence of certain cyclodextrins. These cyclodextrins also allow the rods to be extracted from the membrane and incorporated into preformed membranes. The latter will improve the future applications of these rods in cellular systems as stable membrane-associated anchors for the functionalization of membrane surfaces.}, language = {en} } @article{SigmanDiFioreHainetal.2009, author = {Sigman, Daniel M. and DiFiore, Peter J. and Hain, Mathis P. and Deutsch, Curtis and Karl, David M.}, title = {Sinking organic matter spreads the nitrogen isotope signal of pelagic denitrification in the North Pacific}, issn = {0094-8276}, doi = {10.1029/2008gl035784}, year = {2009}, abstract = {Culture studies of denitrifying bacteria predict that denitrification will generate equivalent gradients in the delta N-15 and delta O-18 of deep ocean nitrate. A depth profile of nitrate isotopes from the Hawaii Ocean Time-series Station ALOHA shows less of an increase in delta O-18 than in delta N-15 as one ascends from abyssal waters into the denitrification-impacted mid-depth waters. A box model of the ocean nitrate N and O isotopes indicates that this is the effect of the low latitude nitrate assimilation/regeneration cycle: organic N sinking out of the surface spreads the high-delta N-15 signal of pelagic denitrification into waters well below and beyond the suboxic zone, whereas the nitrate delta O-18 signal of denitrification can only be transmitted by circulation in the interior.}, language = {en} } @article{SigmanDiFioreHainetal.2009, author = {Sigman, Daniel M. and DiFiore, Peter J. and Hain, Mathis P. and Deutsch, Curtis and Wang, Yi and Karl, David M. and Knapp, Angela N. and Lehmann, Moritz F. and Pantoja, Silvio}, title = {The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen}, issn = {0967-0637}, doi = {10.1016/j.dsr.2009.04.007}, year = {2009}, abstract = {We compare the output of an 18-box geochemical model of the ocean with measurements to investigate the controls on both the mean values and variation of nitrate delta N-15 and delta O-18 in the ocean interior. The delta O-18 of nitrate is our focus because it has been explored less in previous work. Denitrification raises the delta N-15 and delta O-18 of mean ocean nitrate by equal amounts above their input values for N-2 fixation (for delta N-15) and nitrification (for delta O-18), generating parallel gradients in the delta N-15 and delta O-18 of deep ocean nitrate. Partial nitrate assimilation in the photic zone also causes equivalent increases in the delta N-15 and delta O-18 of the residual nitrate that can be transported into the interior. However, the regeneration and nitrification of sinking N can be said to decouple the N and O isotopes of deep ocean nitrate, especially when the sinking N is produced in a low latitude region, where nitrate consumption is effectively complete. The delta N-15 of the regenerated nitrate is equivalent to that originally consumed, whereas the regeneration replaces nitrate previously elevated in delta O-18 due to denitrification or nitrate assimilation with nitrate having the delta O-18 of nitrification. This lowers the delta O-18 of mean ocean nitrate and weakens nitrate delta O-18 gradients in the interior relative to those in delta N-15. This decoupling is characterized and quantified in the box model, and agreement with data shows its clear importance in the real ocean. At the same time, the model appears to generate overly strong gradients in both delta O-18 and delta N-15 within the ocean interior and a mean ocean nitrate delta O-18 that is higher than measured. This may be due to, in the model, too strong an impact of partial nitrate assimilation in the Southern Ocean on the delta N-15 and delta O-18 of preformed nitrate and/or too little cycling of intermediate-depth nitrate through the low latitude photic zone.}, language = {en} } @article{JaccardGalbraithSigmanetal.2009, author = {Jaccard, Samuel Laurent and Galbraith, Eric D. and Sigman, Daniel M. and Haug, Gerald H. and Francois, Roger and Pedersen, Thomas F. and Dulski, Peter and Thierstein, Hans R.}, title = {Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool}, issn = {0012-821X}, doi = {10.1016/j.epsl.2008.10.017}, year = {2009}, abstract = {Measurements of benthic foraminiferal cadmium:calcium (Cd/Ca) have indicated that the glacial-interglacial change in deep North Pacific phosphate (PO4) concentration was minimal which has been taken by some, workers as a sign that the biological pump did not store more carbon in the deep glacial ocean. Here we present sedimentary redox- sensitive trace metal records from Ocean Drilling Program (ODP) Site 882 (NW subarctic Pacific, water depth 3244 m) to make inferences about changes in deep North Pacific oxygenation and thus respired carbon storage - over the past 150,000 yr. These observations are complemented with biogenic barium and opal measurements as indicators for past organic carbon export to separate the influences of deep-water oxygen concentration and sedimentary organic carbon respiration on the redox state of the sediment. Our results suggest that the deep subarctic Pacific water mass was deleted in ox en during glacial maxima, though it was not anoxic. We reconcile our results with the existing benthic foraminiferal Cd/Ca by invoking a decrease in the fraction of the deep ocean nutrient inventory that was preformed, rather than remineralized. This change would have corresponded to an increase in the deep Pacific storage of respired carbon, which Would have lowered atmospheric carbon dioxide (CO2) by sequestering CO2 away from the atmosphere and by increasing ocean alkalinity through a transient dissolution event in the deep sea. The magnitude of change in preformed nutrients suggested by the North Pacific data Would have accounted for a majority of the observed decrease in glacial atmospheric PCO2.}, language = {en} } @article{AnklamBehlerDingermannetal.2013, author = {Anklam, Elke and Behler, J{\"o}rg and Dingermann, Theodor and Elsinghorst, Paul and Fischer, Jochen and Esselen, Melanie and Foerster, Christian and Fr{\"o}hlich, Daniel and Goedel, Werner Andreas and Gregory, Peter and Grimme, Stefan and Hackenberger, Christian and Hansmann, Max and Heppekausen, Johannes and Hasenstab-Riedel, Sebastian and Kirchhoff, Erhard and Kratz, Karl-Ludwig and Krausz, Ferenc and Linker, Torsten and List, Benjamin and Ray, Kallol and Salzer, Reiner and Schubert, Ulrich and Schueth, Ferdi and Schwarz, Helmut and Schwietzke, Uta and Strey, Reinhard and Stumpf, Thorsten and Vaagt, Franziska and Volodkin, Dmitry and Wilke, Guenther and Zass, Engelbert and Zemb, Thomas}, title = {Awards}, series = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, volume = {61}, journal = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, number = {11}, publisher = {Ges. Dt. Chemiker}, address = {Frankfurt, Main}, issn = {1439-9598}, doi = {10.1002/nadc.201390372}, pages = {1145 -- 1148}, year = {2013}, language = {de} } @article{SauerPoppDittfurthetal.2013, author = {Sauer, David and Popp, Steffen and Dittfurth, Angela and Altdorff, Daniel and Dietrich, Peter and Paasche, Hendrik}, title = {Soil moisture assessment over an alpine hillslope with significant soil heterogeneity}, series = {Vadose zone journal}, volume = {12}, journal = {Vadose zone journal}, number = {4}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2013.01.0009}, pages = {12}, year = {2013}, abstract = {We strive to assess soil water content on a well-studied slow-moving hillslope in Austria. In doing so, we employ time lapse mapping of bulk electrical conductivity using a geophysical electromagnetic induction system operated at low induction numbers. This information is complemented by the acquisition of soil samples for gravimetric water content analysis during one survey campaign. Simple visual soil sample analysis reveals that the upper material in the survey area is a spatially highly variable mixture of predominately sandy, silty, clayey and organic materials. Due to this heterogeneity, classical approaches of mapping soil moisture on the basis of stationary mapping of electrical conductivity variations are not successful. Also the time-lapse approach does not allow ruling out some of the ambiguity inherent to the linkage of bulk electrical conductivity to soil water content. However, indication is found that time-lapse measurements may have supportive capabilities to identify regions of low precipitation infiltration due to high soil saturation. Furthermore, the relationship between the mean electrical conductivity averaged over a full vegetation period and an already available ecological moisture map produced by vegetation analysis is found to resemble closely the relationship observed between gravimetric soil water content and electrical conductivity during the time of sample collection except for highly organic soils. This leads us to the assumption that the relative soil moisture distribution is temporarily stable except for those areas characterized by highly organic soils.}, language = {en} } @article{DeFrenneRodriguezSanchezCoomesetal.2013, author = {De Frenne, Pieter and Rodriguez-Sanchez, Francisco and Coomes, David Anthony and B{\"a}ten, Lander and Verstr{\"a}ten, Gorik and Vellend, Mark and Bernhardt-R{\"o}mermann, Markus and Brown, Carissa D. and Brunet, J{\"o}rg and Cornelis, Johnny and Decocq, Guillaume M. and Dierschke, Hartmut and Eriksson, Ove and Gilliam, Frank S. and Hedl, Radim and Heinken, Thilo and Hermy, Martin and Hommel, Patrick and Jenkins, Michael A. and Kelly, Daniel L. and Kirby, Keith J. and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Peterken, George and Petrik, Petr and Schultz, Jan and Sonnier, Gregory and Van Calster, Hans and Waller, Donald M. and Walther, Gian-Reto and White, Peter S. and Woods, Kerry D. and Wulf, Monika and Graae, Bente Jessen and Verheyen, Kris}, title = {Microclimate moderates plant responses to macroclimate warming}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {110}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {46}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1311190110}, pages = {18561 -- 18565}, year = {2013}, abstract = {Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity.}, language = {en} } @article{CodorniuHernandezBoeseKusalik2013, author = {Codorniu-Hernandez, Edelsys and Boese, Adrian Daniel and Kusalik, Peter G.}, title = {The hemibond as an alternative condensed phase structure for the hydroxyl radical}, series = {Canadian journal of chemistry = Revue canadienne de chimie}, volume = {91}, journal = {Canadian journal of chemistry = Revue canadienne de chimie}, number = {7}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {0008-4042}, doi = {10.1139/cjc-2012-0520}, pages = {544 -- 551}, year = {2013}, abstract = {Despite the critical importance of the hydroxyl radical in major scientific fields, there are still open questions on the behavior of this species in the aqueous phase. In particular, there has been much debate on the existence of a hemibonded interaction between the hydroxyl radical and water molecules. While some reports indicate that the hemibonded radical might explain some experimental data, others have claimed that this interaction is simply a density functional theory (DFT) artifact. Here, we provide results from high level (basis set limit of coupled-cluster levels up to single, double, triple excitations (CCSD(T)) and beyond) ab initio calculations of different OH center dot(H2O)(n) clusters in the gas phase to accurately explore the existence of the hemibonded interaction and its energy difference with respect to other well-defined hydrogen bond interactions. Additional comparisons with second order perturbation theory (MP2) and DFT are also presented. Constrained molecular dynamics was applied to determine the free energy for the formation/disruption and ice systems. Overall, our findings confirm that the hemibond can be an alternative structure for the hydroxyl radical in the condensed phase when the formation of hydrogen bonds is impeded. These results will aid the understanding of theoretical and experimental data and help future experimental designs for the detection of this important species.}, language = {en} } @article{HorikoshiYaghootkarMookKanamorietal.2013, author = {Horikoshi, Momoko and Yaghootkar, Hanieh and Mook-Kanamori, Dennis O. and Sovio, Ulla and Taal, H. Rob and Hennig, Branwen J. and Bradfield, Jonathan P. and St Pourcain, Beate and Evans, David M. and Charoen, Pimphen and Kaakinen, Marika and Cousminer, Diana L. and Lehtimaki, Terho and Kreiner-Moller, Eskil and Warrington, Nicole M. and Bustamante, Mariona and Feenstra, Bjarke and Berry, Diane J. and Thiering, Elisabeth and Pfab, Thiemo and Barton, Sheila J. and Shields, Beverley M. and Kerkhof, Marjan and van Leeuwen, Elisabeth M. and Fulford, Anthony J. and Kutalik, Zoltan and Zhao, Jing Hua and den Hoed, Marcel and Mahajan, Anubha and Lindi, Virpi and Goh, Liang-Kee and Hottenga, Jouke-Jan and Wu, Ying and Raitakari, Olli T. and Harder, Marie N. and Meirhaeghe, Aline and Ntalla, Ioanna and Salem, Rany M. and Jameson, Karen A. and Zhou, Kaixin and Monies, Dorota M. and Lagou, Vasiliki and Kirin, Mirna and Heikkinen, Jani and Adair, Linda S. and Alkuraya, Fowzan S. and Al-Odaib, Ali and Amouyel, Philippe and Andersson, Ehm Astrid and Bennett, Amanda J. and Blakemore, Alexandra I. F. and Buxton, Jessica L. and Dallongeville, Jean and Das, Shikta and de Geus, Eco J. C. and Estivill, Xavier and Flexeder, Claudia and Froguel, Philippe and Geller, Frank and Godfrey, Keith M. and Gottrand, Frederic and Groves, Christopher J. and Hansen, Torben and Hirschhorn, Joel N. and Hofman, Albert and Hollegaard, Mads V. and Hougaard, David M. and Hyppoenen, Elina and Inskip, Hazel M. and Isaacs, Aaron and Jorgensen, Torben and Kanaka-Gantenbein, Christina and Kemp, John P. and Kiess, Wieland and Kilpelainen, Tuomas O. and Klopp, Norman and Knight, Bridget A. and Kuzawa, Christopher W. and McMahon, George and Newnham, John P. and Niinikoski, Harri and Oostra, Ben A. and Pedersen, Louise and Postma, Dirkje S. and Ring, Susan M. and Rivadeneira, Fernando and Robertson, Neil R. and Sebert, Sylvain and Simell, Olli and Slowinski, Torsten and Tiesler, Carla M. T. and Toenjes, Anke and Vaag, Allan and Viikari, Jorma S. and Vink, Jacqueline M. and Vissing, Nadja Hawwa and Wareham, Nicholas J. and Willemsen, Gonneke and Witte, Daniel R. and Zhang, Haitao and Zhao, Jianhua and Wilson, James F. and Stumvoll, Michael and Prentice, Andrew M. and Meyer, Brian F. and Pearson, Ewan R. and Boreham, Colin A. G. and Cooper, Cyrus and Gillman, Matthew W. and Dedoussis, George V. and Moreno, Luis A. and Pedersen, Oluf and Saarinen, Maiju and Mohlke, Karen L. and Boomsma, Dorret I. and Saw, Seang-Mei and Lakka, Timo A. and Koerner, Antje and Loos, Ruth J. F. and Ong, Ken K. and Vollenweider, Peter and van Duijn, Cornelia M. and Koppelman, Gerard H. and Hattersley, Andrew T. and Holloway, John W. and Hocher, Berthold and Heinrich, Joachim and Power, Chris and Melbye, Mads and Guxens, Monica and Pennell, Craig E. and Bonnelykke, Klaus and Bisgaard, Hans and Eriksson, Johan G. and Widen, Elisabeth and Hakonarson, Hakon and Uitterlinden, Andre G. and Pouta, Anneli and Lawlor, Debbie A. and Smith, George Davey and Frayling, Timothy M. and McCarthy, Mark I. and Grant, Struan F. A. and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Timpson, Nicholas J. and Prokopenko, Inga and Freathy, Rachel M.}, title = {New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism}, series = {Nature genetics}, volume = {45}, journal = {Nature genetics}, number = {1}, publisher = {Nature Publ. Group}, address = {New York}, organization = {MAGIC, Early Growth Genetics EGG}, issn = {1061-4036}, doi = {10.1038/ng.2477}, pages = {76 -- U115}, year = {2013}, abstract = {Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood(1). Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits(2). In an expanded genome-wide association metaanalysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.}, language = {en} } @article{MorenoMelnickRosenauetal.2011, author = {Moreno, Marcelo Spegiorin and Melnick, Daniel and Rosenau, M. and Bolte, John and Klotz, Jan and Echtler, Helmut Peter and B{\´a}ez, Juan Carlos and Bataille, Klaus and Chen, J. and Bevis, M. and Hase, H. and Oncken, Onno}, title = {Heterogeneous plate locking in the South-Central Chile subduction zone building up the next great earthquake}, series = {Earth \& planetary science letters}, volume = {305}, journal = {Earth \& planetary science letters}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.03.025}, pages = {413 -- 424}, year = {2011}, abstract = {We use Global Positioning System (GPS) velocities and kinematic Finite Element models (FE-models) to infer the state of locking between the converging Nazca and South America plates in South-Central Chile (36 degrees S -46 degrees S) and to evaluate its spatial and temporal variability. GPS velocities provide information on earthquake-cycle deformation over the last decade in areas affected by the megathrust events of 1960 (M-w = 9.5) and 2010 (M-w = 8.8). Our data confirm that a change in surface velocity patterns of these two seismotectonic segments can be related to their different stages in the seismic cycle: Accordingly, the northern (2010) segment was in a final stage of interseismic loading whereas the southern (1960) segment is still in a postseismic stage and undergoes a prolonged viscoelastic mantle relaxation. After correcting the signals for mantle relaxation, the residual GPS velocity pattern suggests that the plate interface accumulates slip deficit in a spatially and presumably temporally variable way towards the next great event. Though some similarity exist between locking and 1960 coseismic slip, extrapolating the current, decadal scale slip deficit accumulation towards the similar to 300-yr recurrence times of giant events here does neither yield the slip distribution nor the moment magnitude of the 1960 earthquake. This suggests that either the locking pattern is evolving in time (to reconcile a slip deficit distribution similar to the 1960 earthquake) or that some asperities are not persistent over multiple events. The accumulated moment deficit since 1960 suggests that highly locked patches in the 1960 segment are already capable of producing a M similar to 8 event if triggered to fail by stress transfer from the 2010 event.}, language = {en} } @misc{SchurrPagelSarmentoetal.2012, author = {Schurr, Frank Martin and Pagel, J{\"o}rn and Sarmento, Juliano Sarmento and Groeneveld, Juergen and Bykova, Olga and O'Hara, Robert B. and Hartig, Florian and Kissling, W. Daniel and Linder, H. Peter and Midgley, Guy F. and Schr{\"o}der-Esselbach, Boris and Singer, Alexander and Zimmermann, Niklaus E.}, title = {How to understand species' niches and range dynamics: a demographic research agenda for biogeography}, series = {Journal of biogeography}, volume = {39}, journal = {Journal of biogeography}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/j.1365-2699.2012.02737.x}, pages = {2146 -- 2162}, year = {2012}, abstract = {Range dynamics causes mismatches between a species geographical distribution and the set of suitable environments in which population growth is positive (the Hutchinsonian niche). This is because sourcesink population dynamics cause species to occupy unsuitable environments, and because environmental change creates non-equilibrium situations in which species may be absent from suitable environments (due to migration limitation) or present in unsuitable environments that were previously suitable (due to time-delayed extinction). Because correlative species distribution models do not account for these processes, they are likely to produce biased niche estimates and biased forecasts of future range dynamics. Recently developed dynamic range models (DRMs) overcome this problem: they statistically estimate both range dynamics and the underlying environmental response of demographic rates from species distribution data. This process-based statistical approach qualitatively advances biogeographical analyses. Yet, the application of DRMs to a broad range of species and study systems requires substantial research efforts in statistical modelling, empirical data collection and ecological theory. Here we review current and potential contributions of these fields to a demographic understanding of niches and range dynamics. Our review serves to formulate a demographic research agenda that entails: (1) advances in incorporating process-based models of demographic responses and range dynamics into a statistical framework, (2) systematic collection of data on temporal changes in distribution and abundance and on the response of demographic rates to environmental variation, and (3) improved theoretical understanding of the scaling of demographic rates and the dynamics of spatially coupled populations. This demographic research agenda is challenging but necessary for improved comprehension and quantification of niches and range dynamics. It also forms the basis for understanding how niches and range dynamics are shaped by evolutionary dynamics and biotic interactions. Ultimately, the demographic research agenda should lead to deeper integration of biogeography with empirical and theoretical ecology.}, language = {en} } @article{ZirafiKimStaendkeretal.2015, author = {Zirafi, Onofrio and Kim, Kyeong-Ae and St{\"a}ndker, Ludger and Mohr, Katharina B. and Sauter, Daniel and Heigele, Anke and Kluge, Silvia F. and Wiercinska, Eliza and Chudziak, Doreen and Richter, Rudolf and M{\"o}pps, Barbara and Gierschik, Peter and Vas, Virag and Geiger, Hartmut and Lamla, Markus and Weil, Tanja and Burster, Timo and Zgraja, Andreas and Daubeuf, Francois and Frossard, Nelly and Hachet-Haas, Muriel and Heunisch, Fabian and Reichetzeder, Christoph and Galzi, Jean-Luc and Perez-Castells, Javier and Canales-Mayordomo, Angeles and Jimenez-Barbero, Jesus and Gimenez-Gallego, Guillermo and Schneider, Marion and Shorter, James and Telenti, Amalio and Hocher, Berthold and Forssmann, Wolf-Georg and Bonig, Halvard and Kirchhoff, Frank and M{\"u}nch, Jan}, title = {Discovery and Characterization of an Endogenous CXCR4 Antagonist}, series = {Cell reports}, volume = {11}, journal = {Cell reports}, number = {5}, publisher = {Cell Press}, address = {Cambridge}, issn = {2211-1247}, doi = {10.1016/j.celrep.2015.03.061}, pages = {737 -- 747}, year = {2015}, abstract = {CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.}, language = {en} } @unpublished{KopetzkiSeeberger2012, author = {Kopetzki, Daniel and Seeberger, Peter H.}, title = {Photochemistry in fight against malaria}, series = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, volume = {60}, journal = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, number = {7-8}, publisher = {Ges. Dt. Chemiker}, address = {Frankfurt, Main}, issn = {1439-9598}, pages = {714 -- 717}, year = {2012}, language = {de} } @article{SoliveresMaestreUlrichetal.2015, author = {Soliveres, Santiago and Maestre, Fernando T. and Ulrich, Werner and Manning, Peter and Boch, Steffen and Bowker, Matthew A. and Prati, Daniel and Delgado-Baquerizo, Manuel and Quero, Jose L. and Sch{\"o}ning, Ingo and Gallardo, Antonio and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Garcia-Gomez, Miguel and Ochoa, Victoria and Schulze, Ernst-Detlef and Fischer, Markus and Allan, Eric}, title = {Intransitive competition is widespread in plant communities and maintains their species richness}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12456}, pages = {790 -- 798}, year = {2015}, abstract = {Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in >65\% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation.}, language = {en} } @article{SoliveresvanderPlasManningetal.2016, author = {Soliveres, Santiago and van der Plas, Fons and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Renner, Swen C. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Heinze, Johannes and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and T{\"u}rke, Manfred and Venter, Paul C. and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality}, series = {Nature : the international weekly journal of science}, volume = {536}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature19092}, pages = {456 -- +}, year = {2016}, language = {en} } @article{KloseRolkeBaumann2017, author = {Klose, Sascha Peter and Rolke, Daniel and Baumann, Otto}, title = {Morphogenesis of honeybee hypopharyngeal gland during pupal development}, series = {Frontiers in zoology}, volume = {14}, journal = {Frontiers in zoology}, publisher = {BioMed Central}, address = {London}, issn = {1742-9994}, doi = {10.1186/s12983-017-0207-z}, year = {2017}, abstract = {Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development.}, language = {en} } @misc{KloseRolkeBaumann2017, author = {Klose, Sascha Peter and Rolke, Daniel and Baumann, Otto}, title = {Morphogenesis of honeybee hypopharyngeal gland during pupal development}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395712}, pages = {14}, year = {2017}, abstract = {Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development.}, language = {en} } @article{GrenzerDarowskiGeueetal.2001, author = {Grenzer, J{\"o}rg and Darowski, Nora and Geue, Thomas and Pietsch, Ullrich and Daniel, A. and Rennon, Siegfried and Reithmaier, Johann-Peter and Forchel, Alfred}, title = {Strain analysis and quantum well intermixing of a laterally modulated multiquantum well system produced by focused ion beam implantation}, year = {2001}, language = {en} } @article{GrenzerDarowskiPietschetal.2000, author = {Grenzer, J{\"o}rg and Darowski, Nora and Pietsch, Ullrich and Daniel, A. and Reithmaier, Johann-Peter and Rennon, Siegfried and Forchel, Alfred}, title = {Grazing-incidence diffraction strain analysis of a laterally-modulated multiquantum well system produced by focused-ion-beam implantation}, year = {2000}, language = {en} } @article{KloseRolkeBaumann2017, author = {Klose, Sascha Peter and Rolke, Daniel and Baumann, Otto}, title = {Morphogenesis of honeybee hypopharyngeal gland during pupal development}, series = {Frontiers in zoology}, volume = {14}, journal = {Frontiers in zoology}, publisher = {BioMed Central}, address = {London}, issn = {1742-9994}, doi = {10.1186/s12983-017-0207-z}, pages = {2866 -- 2875}, year = {2017}, abstract = {Background: The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results: By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 mu m in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 mu m. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions: The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development.}, language = {en} } @misc{ArnoldCostachieDallapiazzaetal.2010, author = {Arnold, Rafael and Costachie, Silviu and Dallapiazza, Michael and Denz, Rebekka and Feinberg, Anat and Gr{\"o}zinger, Elvira and Gr{\"o}zinger, Karl E. and Hiscott, William and Jegeb{\"a}ck, Per and Jurewicz, Grażyna and J{\"u}tte, Daniel and J{\"u}tte, Robert and Keidosiute, Elena and Knufinke, Ulrich and Lang, Stefan and Lisek, Joanna and Popescu, Diana I. and Radosav, Maria and R{\"u}dlin, Ingedore and Rutkowski, Anna and Salner, Peter and Szulc, Michał and Talabardon, Susanne and Visi, Tam{\´a}s and Wallach, Kerry}, title = {PaRDeS : Zeitschrift der Vereinigung f{\"u}r J{\"u}dische Studien e.V. = Geographical Turn}, number = {16}, editor = {Denz, Rebekka and Jurewicz, Grażyna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-055-7}, issn = {1614-6492}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42065}, year = {2010}, abstract = {PaRDeS. Zeitschrift der Vereinigung f{\"u}r J{\"u}dische Studien e.V., m{\"o}chte die fruchtbare und facettenreiche Kultur des Judentums sowie seine Ber{\"u}hrungspunkte zur Umwelt in den unterschiedlichen Bereichen dokumentieren. Daneben dient die Zeitschrift als Forum zur Positionierung der F{\"a}cher J{\"u}dische Studien und Judaistik innerhalb des wissenschaftlichen Diskurses sowie zur Diskussion ihrer historischen und gesellschaftlichen Verantwortung.}, language = {de} } @article{KrupnikWagnerVincentetal.2022, author = {Krupnik, Seweryn and Wagner, Aleksandra and Vincent, Olga and Rudek, Tadeusz J. and Wade, Robert and Misik, Mat{\´u}š and Akerboom, Sanne and Foulds, Chris and Smith Stegen, Karen and Adem, {\c{C}}iğdem and Batel, Susana and Rabitz, Florian and Certom{\`a}, Chiara and Chodkowska-Miszczuk, Justyna and Dokupilov{\´a}, Dušana and Leiren, Merethe D. and Ignatieva, Frolova M. and Gabald{\´o}n-Estevan, Daniel. and Horta, Ana and Karn{\o}e, Peter and Lilliestam, Johan and Loorbach, Derk A. and M{\"u}hlemeier, Susan and N{\´e}moz, Sophie and Nilsson, M{\aa}ns and Osička, Jan and Papamikrouli, Louiza and Pellizioni, Luigi and Sareen, Siddharth and Sarrica, Mauro and Seyfang, Gill and Sovacool, Benjamin K. and Telesiene, Audrone and Zapletalova, Veronika and von Wirth, Timo}, title = {Beyond technology}, series = {Energy research \& social science}, volume = {89}, journal = {Energy research \& social science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {22146296}, doi = {10.1016/j.erss.2022.102536}, pages = {11}, year = {2022}, abstract = {This article enriches the existing literature on the importance and role of the social sciences and humanities (SSH) in renewable energy sources research by providing a novel approach to instigating the future research agenda in this field. Employing a series of in-depth interviews, deliberative focus group workshops and a systematic horizon scanning process, which utilised the expert knowledge of 85 researchers from the field with diverse disciplinary backgrounds and expertise, the paper develops a set of 100 priority questions for future research within SSH scholarship on renewable energy sources. These questions were aggregated into four main directions: (i) deep transformations and connections to the broader economic system (i.e. radical ways of (re)arranging socio-technical, political and economic relations), (ii) cultural and geographical diversity (i.e. contextual cultural, historical, political and socio-economic factors influencing citizen support for energy transitions), (iii) complexifying energy governance (i.e. understanding energy systems from a systems dynamics perspective) and (iv) shifting from instrumental acceptance to value-based objectives (i.e. public support for energy transitions as a normative notion linked to trust-building and citizen engagement). While this agenda is not intended to be—and cannot be—exhaustive or exclusive, we argue that it advances the understanding of SSH research on renewable energy sources and may have important value in the prioritisation of SSH themes needed to enrich dialogues between policymakers, funding institutions and researchers. SSH scholarship should not be treated as instrumental to other research on renewable energy but as intrinsic and of the same hierarchical importance.}, language = {en} } @article{WarszawskiKrieglerLentonetal.2021, author = {Warszawski, Lila and Kriegler, Elmar and Lenton, Timothy M. and Gaffney, Owen and Jacob, Daniela and Klingenfeld, Daniel and Koide, Ryu and Costa, Mar{\´i}a M{\´a}{\~n}ez and Messner, Dirk and Nakicenovic, Nebojsa and Schellnhuber, Hans Joachim and Schlosser, Peter and Takeuchi, Kazuhiko and van der Leeuw, Sander and Whiteman, Gail and Rockstr{\"o}m, Johan}, title = {All options, not silver bullets, needed to limit global warming to 1.5 °C}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {6}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/abfeec}, pages = {15}, year = {2021}, abstract = {Climate science provides strong evidence of the necessity of limiting global warming to 1.5 °C, in line with the Paris Climate Agreement. The IPCC 1.5 °C special report (SR1.5) presents 414 emissions scenarios modelled for the report, of which around 50 are classified as '1.5 °C scenarios', with no or low temperature overshoot. These emission scenarios differ in their reliance on individual mitigation levers, including reduction of global energy demand, decarbonisation of energy production, development of land-management systems, and the pace and scale of deploying carbon dioxide removal (CDR) technologies. The reliance of 1.5 °C scenarios on these levers needs to be critically assessed in light of the potentials of the relevant technologies and roll-out plans. We use a set of five parameters to bundle and characterise the mitigation levers employed in the SR1.5 1.5 °C scenarios. For each of these levers, we draw on the literature to define 'medium' and 'high' upper bounds that delineate between their 'reasonable', 'challenging' and 'speculative' use by mid century. We do not find any 1.5 °C scenarios that stay within all medium upper bounds on the five mitigation levers. Scenarios most frequently 'over use' CDR with geological storage as a mitigation lever, whilst reductions of energy demand and carbon intensity of energy production are 'over used' less frequently. If we allow mitigation levers to be employed up to our high upper bounds, we are left with 22 of the SR1.5 1.5 °C scenarios with no or low overshoot. The scenarios that fulfil these criteria are characterised by greater coverage of the available mitigation levers than those scenarios that exceed at least one of the high upper bounds. When excluding the two scenarios that exceed the SR1.5 carbon budget for limiting global warming to 1.5 °C, this subset of 1.5 °C scenarios shows a range of 15-22 Gt CO2 (16-22 Gt CO2 interquartile range) for emissions in 2030. For the year of reaching net zero CO2 emissions the range is 2039-2061 (2049-2057 interquartile range).}, language = {en} } @article{SirockoDietrichVeresetal.2013, author = {Sirocko, Frank and Dietrich, Stephan and Veres, Daniel and Grootes, Pieter M. and Schaber-Mohr, Katja and Seelos, Klemens and Nadeau, Marie-Josee and Kromer, Bernd and Rothacker, Leo and Roehner, Marieke and Krbetschek, Matthias and Appleby, Peter G. and Hambach, Ulrich and Rolf, Christian and Sudo, Masafumi and Grim, Stephanie}, title = {Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {62}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2012.09.011}, pages = {56 -- 76}, year = {2013}, abstract = {During the last twelve years the ELSA Project (Eifel Laminated Sediment Archive) at Mainz University has drilled a total of about 52 cores from 27 maar lakes and filled-in maar basins in the Eifel/Germany. Dating has been completed for the Holocene cores using 6 different methods (Pb-210 and Cs-137 activities, palynostratigraphy, event markers, varve counting, C-14) In general, the different methods consistently complement one another within error margins. Event correlation was used for relating typical lithological changes with historically known events such as the two major Holocene flood events at 1342 AD and ca 800 BC. Dating of MIS2-MIS3 core sections is based on greyscale tuning, radiocarbon and OSL dating, magnetostratigraphy and tephrochronology. The lithological changes in the sediment cores demonstrate a sequence of events similar to the North Atlantic rapid climate variability of the Last Glacial Cycle. The warmest of the MIS3 interstadials was GI14, when a forest with abundant spruce covered the Eifel area from 55 to 48 ka BP, i.e. during a time when also other climate archives in Europe suggested very warm conditions. The forest of this "Early Stage 3 warm phase" developed subsequently into a steppe with scattered birch and pine, and finally into a glacial desert at around 25 ka BP. Evidence for Mono Lake and Laschamp geomagnetic excursions is found in two long cores. Several large eruptions during Middle and Late Pleistocene (Ulmener Maar - 11,000 varve years BP, Laacher See - 12,900 varve years BP, Mosenberg volcanoes/Meerfelder Maar 41-45 cal ka BP, Dumpel Maar 116 ka BP, Glees Maar - 151 ka BP) produced distinct ash-layers crucial for inter-core and inter-site correlations. The oldest investigated maar of the Eifel is Ar-40/Ar-39 dated to the time older than 520 ka BP.}, language = {en} } @article{ClarkShakunMarcottetal.2016, author = {Clark, Peter U. and Shakun, Jeremy D. and Marcott, Shaun A. and Mix, Alan C. and Eby, Michael and Kulp, Scott and Levermann, Anders and Milne, Glenn A. and Pfister, Patrik L. and Santer, Benjamin D. and Schrag, Daniel P. and Solomon, Susan and Stocker, Thomas F. and Strauss, Benjamin H. and Weaver, Andrew J. and Winkelmann, Ricarda and Archer, David and Bard, Edouard and Goldner, Aaron and Lambeck, Kurt and Pierrehumbert, Raymond T. and Plattner, Gian-Kasper}, title = {Consequences of twenty-first-century policy for multi-millennial climate and sea-level change}, series = {Nature climate change}, volume = {6}, journal = {Nature climate change}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/NCLIMATE2923}, pages = {360 -- 369}, year = {2016}, abstract = {Most of the policy debate surrounding the actions needed to mitigate and adapt to anthropogenic climate change has been framed by observations of the past 150 years as well as climate and sea-level projections for the twenty-first century. The focus on this 250-year window, however, obscures some of the most profound problems associated with climate change. Here, we argue that the twentieth and twenty-first centuries, a period during which the overwhelming majority of human-caused carbon emissions are likely to occur, need to be placed into a long-term context that includes the past 20 millennia, when the last Ice Age ended and human civilization developed, and the next ten millennia, over which time the projected impacts of anthropogenic climate change will grow and persist. This long-term perspective illustrates that policy decisions made in the next few years to decades will have profound impacts on global climate, ecosystems and human societies - not just for this century, but for the next ten millennia and beyond.}, language = {en} } @misc{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81198}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10-18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @article{SchmidtHagenBreteetal.2010, author = {Schmidt, Roland and Hagen, Sebastian and Brete, Daniel and Carley, Robert and Gahl, Cornelius and Dokic, Jadranka and Saalfrank, Peter and Hecht, Stefan and Tegeder, Petra and Weinelt, Martin}, title = {On the electronic and geometrical structure of the trans- and cis-isomer of tetra-tert-butyl-azobenzene on Au(111)}, issn = {1463-9076}, doi = {10.1039/B924409c}, year = {2010}, abstract = {Near edge X-ray absorption. ne structure and X-ray photoelectron spectroscopy have been employed to follow the reversible trans to cis isomerization of tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). For one monolayer the molecules adopt an adsorption geometry characteristic of the trans-TBA isomer. The azo-bridge (N = N) is aligned nearly parallel to the surface and the phenyl rings exhibit a planar orientation with a small tilt angle <= 4 degrees with respect to the surface normal. Illumination of the molecular layer at 455 nm triggers the trans to cis isomerization which is associated with a pronounced change of the geometrical and electronic structure. The N1s to pi* transition of the central azo-bridge shifts by 0.45 +/- 0.05 eV to higher photon energy and the transition dipole moment (TDM) is tilted by 59 +/- 5 degrees with respect to the surface normal. The pi-system of one phenyl ring is tilted by about 30 degrees with respect to the surface normal, while the second ring plane is oriented nearly perpendicular to the surface. This reorientation is supported by a shift and broadening of the C-H resonances associated with the tert-butyl legs of the molecule. These findings support a configuration of the photo-switched TBA molecule on Au(111) which is comparable to the cis-isomer of the free molecule. In the photo-stationary state 53 +/- 5\% of the TBA molecules are switched to the cis configuration. Thermal activation induces the back reaction to trans-TBA.}, language = {en} } @article{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {27}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03093e}, pages = {18079 -- 18086}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10(-18) cm(2) for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @misc{DlugaiczykBlastenbreiHaasetal.2003, author = {Dlugaiczyk, Martina and Blastenbrei, Peter and Haas, Hagen and Schmitt, Bernhard and P{\"u}hringer, Andrea and Reimer, Torsten and Schreiter, Ren{\´e} and Podruczny, Grzegorz and Huntebrinker, Jan Willem and Mehrkens, Heidi and K{\"o}rber, Esther-Beate and G{\"o}se, Frank and Feistauer, Daniela and Muth, J{\"o}rg and Busch, Michael and Krebs, Daniel and Luh, J{\"u}rgen and Ludwig, Ulrike}, title = {Milit{\"a}r und Gesellschaft in der Fr{\"u}hen Neuzeit}, volume = {7}, number = {1}, organization = {Arbeitskreis Milit{\"a}r und Gesellschaft in der Fr{\"u}hen Neuzeit e.V. (Hrsg.)}, issn = {1617-9722}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-28093}, year = {2003}, abstract = {Aus dem Inhalt dieser Ausgabe: BEITR{\"A}GE: Martina Dlugaiczyk: Der Waffenstillstand (1609-1621) als Medienereignis Peter Blastenbrei: Literaten und Soldaten (Teil 2) Hagen Haas: "Denn die Bombe, wann sie f{\"a}llt ..." PROJEKTE: Bernhard Schmitt: "... eine ausgedehnte Gelegenheit zu einer ordentlichen Versorgung und besseren Fortkommen in dem Milit{\"a}rdienste" Andrea P{\"u}hringer: Die Darstellung von -Gewalt- im Krieg Torsten Reimer: Armada und Seeschlacht Ren{\´e} Schreiter: Das Große Milit{\"a}rwaisenhaus zu Potsdam Grzegorz Podruczny: Preußische Milit{\"a}rarchitektur in Schlesien Jan Willem Huntebrinker: "Von der landsknecht lumphosen" BERICHTE: Heidi Mehrkens: Besatzung, Funktion und Gestalt milit{\"a}rischer Fremdherrschaft Esther-Beate K{\"o}rber: Bericht {\"u}ber die Tagung der Arbeitsgemeinschaft zur preußischen Geschichte REZENSIONEN: Frank G{\"o}se: Dreißigj{\"a}hriger Krieg und Westf{\"a}lischer Friede. Forschungen aus westf{\"a}lischen Adelsarchiven. Vortr{\"a}ge auf dem Kolloquium der Vereinigten Westf{\"a}lischen Adelsarchive e. V. vom 3.-4. Dezember 1998 in M{\"u}nster, Selbstverlag der Vereinigten Westf{\"a}lischen Adelsarchive e. V. 2000 Daniela Feistauer: Karen Hagemann, "Mannlicher Muth und Teutsche Ehre". Nation, Milit{\"a}r und Geschlecht zur Zeit der Antinapo-leonischen Kriege Preußens, Paderborn, M{\"u}nchen, Wien, Z{\"u}rich: Ferdinand Sch{\"o}ningh 2002 J{\"o}rg Muth: Das Heerwesen in Brandenburg und Preußen von 1640 bis 1806. Bd. 1: Olaf Groehler, Das Heerwesen, 2. Aufl., Berlin: Brandenburgisches Verlaghaus 2001 Michael Busch: Annette Hempel, "Eigentlicher Bericht / So wol auch Abkontra-feytung." Eine Untersuchung der nicht-allegorischen Nach-richtenbl{\"a}tter zu den Schlachten und Belagerungen der schwedischen Armee unter Gustav II Adolf (1628/30-1632), Frankfurt a. M.: Peter Lang Verlag 2000 Daniel Krebs: Michael Zimmer's Diary. Ein deutsches Tagebuch aus dem Amerikanischen B{\"u}rgerkrieg, hrsg. von J{\"u}rgen Macha und Andrea Wolf, Frankfurt am Main, Berlin u. a.: Peter Lang Verlag 2001 J{\"u}rgen Luh: Michael Hochedlinger, Krise und Wiederherstellung. {\"O}ster-reichische Großmachtpolitik zwischen T{\"u}rkenkrieg und "Zweiter Diplomatischer Revolution" 1787-1791, Berlin Duncker \& Humblot 2000 Ulrike Ludwig: Sine ira et studio. Milit{\"a}rhistorische Studien zur Erinnerung an Hans Schmidt, hrsg. von Uta Lindgren, Karl Schnith und Jakob Seibert, Kallm{\"u}nz/OPF.: Verlag Michael Lassleben 2001}, subject = {Milit{\"a}r / Geschichte}, language = {de} } @article{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, volume = {27}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, number = {17}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03093e}, pages = {18079 -- 18086}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10-18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @misc{ZwaagHorstBlaženovićetal.2020, author = {Zwaag, Jelle and Horst, Rob ter and Blaženović, Ivana and St{\"o}ßel, Daniel and Ratter, Jacqueline and Worseck, Josephine M. and Schauer, Nicolas and Stienstra, Rinke and Netea, Mihai G. and Jahn, Dieter and Pickkers, Peter and Kox, Matthijs}, title = {Involvement of lactate and pyruvate in the anti-inflammatory effects exerted by voluntary activation of the sympathetic nervous system}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-51778}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517784}, pages = {20}, year = {2020}, abstract = {We recently demonstrated that the sympathetic nervous system can be voluntarily activated following a training program consisting of cold exposure, breathing exercises, and meditation. This resulted in profound attenuation of the systemic inflammatory response elicited by lipopolysaccharide (LPS) administration. Herein, we assessed whether this training program affects the plasma metabolome and if these changes are linked to the immunomodulatory effects observed. A total of 224 metabolites were identified in plasma obtained from 24 healthy male volunteers at six timepoints, of which 98 were significantly altered following LPS administration. Effects of the training program were most prominent shortly after initiation of the acquired breathing exercises but prior to LPS administration, and point towards increased activation of the Cori cycle. Elevated concentrations of lactate and pyruvate in trained individuals correlated with enhanced levels of anti-inflammatory interleukin (IL)-10. In vitro validation experiments revealed that co-incubation with lactate and pyruvate enhances IL-10 production and attenuates the release of pro-inflammatory IL-1 beta and IL-6 by LPS-stimulated leukocytes. Our results demonstrate that practicing the breathing exercises acquired during the training program results in increased activity of the Cori cycle. Furthermore, this work uncovers an important role of lactate and pyruvate in the anti-inflammatory phenotype observed in trained subjects.}, language = {en} } @article{ZwaagHorstBlaženovićetal.2020, author = {Zwaag, Jelle and Horst, Rob ter and Blaženović, Ivana and St{\"o}ßel, Daniel and Ratter, Jacqueline and Worseck, Josephine M. and Schauer, Nicolas and Stienstra, Rinke and Netea, Mihai G. and Jahn, Dieter and Pickkers, Peter and Kox, Matthijs}, title = {Involvement of lactate and pyruvate in the anti-inflammatory effects exerted by voluntary activation of the sympathetic nervous system}, series = {Metabolites}, volume = {10}, journal = {Metabolites}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2218-1989}, doi = {10.3390/metabo10040148}, pages = {1 -- 18}, year = {2020}, abstract = {We recently demonstrated that the sympathetic nervous system can be voluntarily activated following a training program consisting of cold exposure, breathing exercises, and meditation. This resulted in profound attenuation of the systemic inflammatory response elicited by lipopolysaccharide (LPS) administration. Herein, we assessed whether this training program affects the plasma metabolome and if these changes are linked to the immunomodulatory effects observed. A total of 224 metabolites were identified in plasma obtained from 24 healthy male volunteers at six timepoints, of which 98 were significantly altered following LPS administration. Effects of the training program were most prominent shortly after initiation of the acquired breathing exercises but prior to LPS administration, and point towards increased activation of the Cori cycle. Elevated concentrations of lactate and pyruvate in trained individuals correlated with enhanced levels of anti-inflammatory interleukin (IL)-10. In vitro validation experiments revealed that co-incubation with lactate and pyruvate enhances IL-10 production and attenuates the release of pro-inflammatory IL-1 beta and IL-6 by LPS-stimulated leukocytes. Our results demonstrate that practicing the breathing exercises acquired during the training program results in increased activity of the Cori cycle. Furthermore, this work uncovers an important role of lactate and pyruvate in the anti-inflammatory phenotype observed in trained subjects.}, language = {en} } @article{BookhagenEchtlerMelnicketal.2006, author = {Bookhagen, Bodo and Echtler, Helmut Peter and Melnick, Daniel and Strecker, Manfred and Spencer, Joel Q. G.}, title = {Using uplifted Holocene beach berms for paleoseismic analysis on the Santa Maria Island, south-central Chile}, issn = {0094-8276}, doi = {10.1029/2006gl026734}, year = {2006}, abstract = {Major earthquakes ( M > 8) have repeatedly ruptured the Nazca-South America plate interface of south-central Chile involving meter scale land-level changes. Earthquake recurrence intervals, however, extending beyond limited historical records are virtually unknown, but would provide crucial data on the tectonic behavior of forearcs. We analyzed the spatiotemporal pattern of Holocene earthquakes on Santa Maria Island (SMI; 37 degrees S), located 20 km off the Chilean coast and approximately 70 km east of the trench. SMI hosts a minimum of 21 uplifted beach berms, of which a subset were dated to calculate a mean uplift rate of 2.3 +/- 0.2 m/ky and a tilting rate of 0.022 +/- 0.002 degrees/ky. The inferred recurrence interval of strandline-forming earthquakes is similar to 180 years. Combining coseismic uplift and aseismic subsidence during an earthquake cycle, the net gain in strandline elevation in this environment is similar to 0.4 m per event}, language = {en} } @book{EbkeZanfiKruegeretal.2017, author = {Ebke, Thomas and Zanfi, Caterina and Kr{\"u}ger, Hans-Peter and Sommer, Christian and Viennet, Thomas and Johannßen, Dennis and Balzaretti, Ugo and Toussaint Ondoua, Herv{\´e} and Agard, Olivier and Henckmann, Wolfhart and Simonotti, Edoardo and Hand, Annika and Tavakkoli, Amirpasha and Hackbarth, Daniel and Edinger, Sebastian and Schollmeyer, Justus and von Kalckreuth, Moritz Alexander and Schmieg, Gregor and Batista Rates, Bruno and Kressmann, Philipp and Hilt, Annette and van Buuren, Jasper and Keusch, Juliane and Guzun, Mădălina and Bruff, Kyla and Stahl, Marion and Held, Lukas}, title = {Das Leben im Menschen oder der Mensch im Leben?}, editor = {Ebke, Thomas and Zanfi, Caterina}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-382-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95409}, publisher = {Universit{\"a}t Potsdam}, pages = {514 Seiten}, year = {2017}, abstract = {In der Philosophie des 20. Jahrhunderts wird deutlich, dass es in Frankreich und in Deutschland voneinander abweichende Sichtweisen auf die Frage gibt, ob der Mensch eine "Sonderstellung" in der Dynamik des biologischen und geschichtlichen Lebens genießt. W{\"a}hrend sich in Deutschland die Tradition eines anthropologischen Denkens neu formiert, ist in Frankreich eine scharfe Skepsis gegen{\"u}ber dem Erbe des Humanismus charakteristisch. Die Beitr{\"a}ge dieses zweisprachigen Buches untersuchen diese deutsch-franz{\"o}sische Konstellation von Fragen und Autoren, und aktualisieren die Reflexion auf die (Grenzen der) Singularit{\"a}t des Menschen.}, language = {de} } @article{YildirimSchildgenEchtleretal.2011, author = {Yildirim, Cengiz and Schildgen, Taylor F. and Echtler, Helmut Peter and Melnick, Daniel and Strecker, Manfred}, title = {Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault implications for the northern margin of the Central Anatolian Plateau, Turkey}, series = {Tectonics}, volume = {30}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2010TC002756}, pages = {24}, year = {2011}, abstract = {Surface uplift at the northern margin of the Central Anatolian Plateau (CAP) is integrally tied to the evolution of the Central Pontides (CP), between the North Anatolian Fault (NAF) and the Black Sea. Our regional morphometric and plate kinematic analyses reveal topographic anomalies, steep channel gradients, and local high relief areas as indicators of ongoing differential surface uplift, which is higher in the western CP compared to the eastern CP and fault-normal components of geodetic slip vectors and the character of tectonic activity of the NAF suggest that stress is accumulated in its broad restraining bend. Seismic reflection and structural field data show evidence for a deep structural detachment horizon responsible for the formation of an actively northward growing orogenic wedge with a positive flower-structure geometry across the CP and the NAF. Taken together, the tectonic, plate kinematic, and geomorphic observations imply that the NAF is the main driving mechanism for wedge tectonics and uplift in the CP. In addition, the NAF Zone defines the boundary between the extensional CAP and the contractional CP. The syntectonic deposits within inverted intermontane basins and deeply incised gorges suggest that the formation of relief, changes in sedimentary dynamics, and > 1 km fluvial incision resulted from accelerated uplift starting in the early Pliocene. The Central Pontides thus provide an example of an accretionary wedge with surface-breaking faults that play a critical role in mountain building processes, sedimentary basin development, and ensuing lateral growth of a continental plateau since the end of the Miocene.}, language = {en} } @article{YildirimMelnickBallatoetal.2013, author = {Yildirim, Cengiz and Melnick, Daniel and Ballato, Paolo and Schildgen, Taylor F. and Echtler, Helmut Peter and Erginal, A. Evren and Kiyak, Nafiye Gunec and Strecker, Manfred}, title = {Differential uplift along the northern margin of the Central Anatolian Plateau - inferences from marine terraces}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {81}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.09.011}, pages = {12 -- 28}, year = {2013}, abstract = {Emerged marine terraces and paleoshorelines along plate margins are prominent geomorphic markers that can be used to quantify the rates and patterns of crustal deformation. The northern margin of the Central Anatolian Plateau has been interpreted as an actively deforming orogenic wedge between the North Anatolian Fault and the Black Sea. Here we use uplifted marine terraces across principal faults on the Sinop Peninsula at the central northern side of the Pontide orogenic wedge to unravel patterns of Quaternary faulting and orogenic wedge behavior. We leveled the present-day elevations of paleoshorelines and dated marine terrace deposits using optically stimulated luminescence (OSL) to determine coastal uplift. The elevations of the paleoshorelines vary between 4 +/- 0.2 and 67 +/- 1.4 m above sea level and OSL ages suggest terrace formation episodes during interglacial periods at ca 125, 190, 400 and 570 ka, corresponding to marine isotopic stages (MIS) 5e, 7a, 11 and 15. Mean apparent vertical displacement rates (without eustatic correction) deduced from these terraces range between 0.02 and 0.18 mm/a, with intermittent faster rates of up to 0.26 mm/a. We obtained higher rates at the eastern and southern parts of the peninsula, toward the hinterland, indicating non-uniform uplift across the different morphotectonic segments of the peninsula. Our data are consistent with active on- and offshore faulting across the Sinop Peninsula. When integrated with regional tectonic observations, the faulting pattern reflects shortening distributed over a broad region of the northern margin of the Central Anatolian Plateau during the Quaternary.}, language = {en} } @article{MelnickBookhagenStreckeretal.2009, author = {Melnick, Daniel and Bookhagen, Bodo and Strecker, Manfred and Echtler, Helmut Peter}, title = {Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile}, issn = {0148-0227}, doi = {10.1029/2008jb005788}, year = {2009}, abstract = {This work explores the control of fore-arc structure on segmentation of megathrust earthquake ruptures using coastal geomorphic markers. The Arauco-Nahuelbuta region at the south-central Chile margin constitutes an anomalous fore- arc sector in terms of topography, geology, and exhumation, located within the overlap between the Concepcion and Valdivia megathrust segments. This boundary, however, is only based on similar to 500 years of historical records. We integrate deformed marine terraces dated by cosmogenic nuclides, syntectonic sediments, published fission track data, seismic reflection profiles, and microseismicity to analyze this earthquake boundary over 10(2) -10(6) years. Rapid exhumation of Nahuelbuta's dome-like core started at 4 +/- 1.2 Ma, coeval with inversion of the adjacent Arauco basin resulting in emergence of the Arauco peninsula. Here, similarities between topography, spatiotemporal trends in fission track ages, Pliocene-Pleistocene growth strata, and folded marine terraces suggest that margin-parallel shortening has dominated since Pliocene time. This shortening likely results from translation of a fore-arc sliver or microplate, decoupled from South America by an intra-arc strike-slip fault. Microplate collision against a buttress leads to localized uplift at Arauco accrued by deep-seated reverse faults, as well as incipient oroclinal bending. The extent of the Valdivia segment, which ruptured last in 1960 with an M-w 9.5 event, equals the inferred microplate. We propose that mechanical homogeneity of the fore-arc microplate delimits the Valdivia segment and that a marked discontinuity in the continental basement at Arauco acts as an inhomogeneous barrier controlling nucleation and propagation of 1960-type ruptures. As microplate-related deformation occurs since the Pliocene, we propose that this earthquake boundary and the extent of the Valdivia segment are spatially stable seismotectonic features at million year scale.}, language = {en} } @article{McGinnisFluryTangetal.2017, author = {McGinnis, Daniel F. and Flury, Sabine and Tang, Kam W. and Grossart, Hans-Peter}, title = {Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44478}, pages = {7}, year = {2017}, abstract = {Diurnally-migrating Chaoborus spp. reach populations of up to 130,000 individuals m-2 in lakes up to 70 meters deep on all continents except Antarctica. Linked to eutrophication, migrating Chaoborus spp. dwell in the anoxic sediment during daytime and feed in the oxic surface layer at night. Our experiments show that by burrowing into the sediment, Chaoborus spp. utilize the high dissolved gas partial pressure of sediment methane to inflate their tracheal sacs. This mechanism provides a significant energetic advantage that allows the larvae to migrate via passive buoyancy rather than more energy-costly swimming. The Chaoborus spp. larvae, in addition to potentially releasing sediment methane bubbles twice a day by entering and leaving the sediment, also transport porewater methane within their gas vesicles into the water column, resulting in a flux of 0.01-2 mol m-2 yr-1 depending on population density and water depth. Chaoborus spp. emerging annually as flies also result in 0.1-6 mol m-2 yr-1 of carbon export from the system. Finding the tipping point in lake eutrophication enabling this methane-powered migration mechanism is crucial for ultimately reconstructing the geographical expansion of Chaoborus spp., and the corresponding shifts in the lake's biogeochemistry, carbon cycling and food web structure.}, language = {en} } @article{SvennevigHermannsKeidingetal.2022, author = {Svennevig, Kristian and Hermanns, Reginald L. and Keiding, Marie and Binder, Daniel and Citterio, Michele and Dahl-Jensen, Trine and Mertl, Stefan and S{\o}rensen, Erik Vest and Voss, Peter Henrik}, title = {A large frozen debris avalanche entraining warming permafrost ground-the June 2021 Assapaat landslibe, West Greenland}, series = {Landslides}, volume = {19}, journal = {Landslides}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-510X}, doi = {10.1007/s10346-022-01922-7}, pages = {2549 -- 2567}, year = {2022}, abstract = {A large landslide (frozen debris avalanche) occurred at Assapaat on the south coast of the Nuussuaq Peninsula in Central West Greenland on June 13, 2021, at 04:04 local time. We present a compilation of available data from field observations, photos, remote sensing, and seismic monitoring to describe the event. Analysis of these data in combination with an analysis of pre- and post-failure digital elevation models results in the first description of this type of landslide. The frozen debris avalanche initiated as a 6.9 * 10(6) m(3) failure of permafrozen talus slope and underlying colluvium and till at 600-880 m elevation. It entrained a large volume of permafrozen colluvium along its 2.4 km path in two subsequent entrainment phases accumulating a total volume between 18.3 * 10(6) and 25.9 * 10(6) m(3). About 3.9 * 10(6) m(3) is estimated to have entered the Vaigat strait; however, no tsunami was reported, or is evident in the field. This is probably because the second stage of entrainment along with a flattening of slope angle reduced the mobility of the frozen debris avalanche. We hypothesise that the initial talus slope failure is dynamically conditioned by warming of the ice matrix that binds the permafrozen talus slope. When the slope ice temperature rises to a critical level, its shear resistance is reduced, resulting in an unstable talus slope prone to failure. Likewise, we attribute the large-scale entrainment to increasing slope temperature and take the frozen debris avalanche as a strong sign that the permafrost in this region is increasingly at a critical state. Global warming is enhanced in the Arctic and frequent landslide events in the past decade in Western Greenland let us hypothesise that continued warming will lead to an increase in the frequency and magnitude of these types of landslides. Essential data for critical arctic slopes such as precipitation, snowmelt, and ground and surface temperature are still missing to further test this hypothesis. It is thus strongly required that research funds are made available to better predict the change of landslide threat in the Arctic.}, language = {en} } @article{MaharjanSinghHanifetal.2022, author = {Maharjan, Romi Singh and Singh, Ajay Vikram and Hanif, Javaria and Rosenkranz, Daniel and Haidar, Rashad and Shelar, Amruta and Singh, Shubham Pratap and Dey, Aditya and Patil, Rajendra and Zamboni, Paolo and Laux, Peter and Luch, Andreas}, title = {Investigation of the associations between a nanomaterial's microrheology and toxicology}, series = {ACS omega / American Chemical Society}, volume = {7}, journal = {ACS omega / American Chemical Society}, number = {16}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.2c00472}, pages = {13985 -- 13997}, year = {2022}, abstract = {With the advent of Nanotechnology, the use of nanomaterials in consumer products is increasing on a daily basis, due to which a deep understanding and proper investigation regarding their safety and risk assessment should be a major priority. To date, there is no investigation regarding the microrheological properties of nanomaterials (NMs) in biological media. In our study, we utilized in silico models to select the suitable NMs based on their physicochemical properties such as solubility and lipophilicity. Then, we established a new method based on dynamic light scattering (DLS) microrheology to get the mean square displacement (MSD) and viscoelastic property of two model NMs that are dendrimers and cerium dioxide nanoparticles in Dulbecco's Modified Eagle Medium (DMEM) complete media at three different concentrations for both NMs. Subsequently, we established the cytotoxicological profiling using water-soluble tetrazolium salt-1 (WST-1) and a reactive oxygen species (ROS) assay. To take one step forward, we further looked into the tight junction properties of the cells using immunostaining with Zonula occluden-1 (ZO-1) antibodies and found that the tight junction function or transepithelial resistance (TEER) was affected in response to the microrheology and cytotoxicity. The quantitative polymerase chain reaction (q-PCR) results in the gene expression of ZO-1 after the 24 h treatment with NPs further validates the findings of immunostaining results. This new method that we established will be a reference point for other NM studies which are used in our day-to-day consumer products.}, language = {en} } @misc{RieckHerlemannJuergensetal.2015, author = {Rieck, Angelika and Herlemann, Daniel P. R. and J{\"u}rgens, Klaus and Grossart, Hans-Peter}, title = {Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406442}, pages = {13}, year = {2015}, abstract = {Many studies on bacterial community composition (BCC) do not distinguish between particle associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. "Shannon and Simpson indices" showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52\% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently.}, language = {en} } @article{PieckHerlemannJuergensetal.2015, author = {Pieck, Angelika and Herlemann, Daniel P. P. and Juergens, Klaus and Grossart, Hans-Peter}, title = {Particle-Associated Differ from Free-Living Bacteria in Surface Waters of the Baltic Sea}, series = {Frontiers in microbiology}, volume = {6}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2015.01297}, pages = {13}, year = {2015}, abstract = {Many studies on bacterial community composition (BCC) do not distinguish between particle associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. "Shannon and Simpson indices" showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52\% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently.}, language = {en} } @article{GuenthelDonisKirillinetal.2019, author = {G{\"u}nthel, Marco and Donis, Daphne and Kirillin, Georgiy and Ionescu, Danny and Bizic, Mina and McGinnis, Daniel F. and Grossart, Hans-Peter and Tang, Kam W.}, title = {Contribution of oxic methane production to surface methane emission in lakes and its global importance}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-13320-0}, pages = {10}, year = {2019}, abstract = {Recent discovery of oxic methane production in sea and lake waters, as well as wetlands, demands re-thinking of the global methane cycle and re-assessment of the contribution of oxic waters to atmospheric methane emission. Here we analysed system-wide sources and sinks of surface-water methane in a temperate lake. Using a mass balance analysis, we show that internal methane production in well-oxygenated surface water is an important source for surface-water methane during the stratified period. Combining our results and literature reports, oxic methane contribution to emission follows a predictive function of littoral sediment area and surface mixed layer volume. The contribution of oxic methane source(s) is predicted to increase with lake size, accounting for the majority (>50\%) of surface methane emission for lakes with surface areas >1 km(2).}, language = {en} } @article{MantzoukiLurlingFastneretal.2018, author = {Mantzouki, Evanthia and Lurling, Miquel and Fastner, Jutta and Domis, Lisette Nicole de Senerpont and Wilk-Wozniak, Elzbieta and Koreiviene, Judita and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Krzton, Wojciech and Walusiak, Edward and Karosiene, Jurate and Kasperoviciene, Jurate and Savadova, Ksenija and Vitonyte, Irma and Cillero-Castro, Carmen and Budzynska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosinska, Joanna and Szelag-Wasielewska, Elzbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pelechata, Aleksandra and Pelechaty, Mariusz and Kokocinski, Mikolaj and Garcia-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Parreno Duque, David and Fernandez-Moran, Elisabeth and Karakaya, Nusret and Haggqvist, Kerstin and Demir, Nilsun and Beklioglu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Ugur and Bezirci, Gizem and Tavsanoglu, Ulku Nihan and Ozhan, Koray and Gkelis, Spyros and Panou, Manthos and Fakioglu, Ozden and Avagianos, Christos and Kaloudis, Triantafyllos and Celik, Kemal and Yilmaz, Mete and Marce, Rafael and Catalan, Nuria and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Raposeiro, Pedro M. and Goncalves, Vitor and Antoniou, Maria G. and Tsiarta, Nikoletta and McCarthy, Valerie and Perello, Victor C. and Feldmann, Tonu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Gagala, Ilona and Mankiewicz-Boczek, Joana and Yagci, Meral Apaydin and Cinar, Sakir and Capkin, Kadir and Yagci, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Richardson, Jessica and Visser, Petra M. and Verspagen, Jolanda M. H. and Karan, Tunay and Soylu, Elif Neyran and Maraslioglu, Faruk and Napiorkowska-Krzebietke, Agnieszka and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Antao-Geraldes, Ana M. and Vasconcelos, Vitor and Morais, Joao and Vale, Micaela and Koker, Latife and Akcaalan, Reyhan and Albay, Meric and Maronic, Dubravka Spoljaric and Stevic, Filip and Pfeiffer, Tanja Zuna and Fonvielle, Jeremy Andre and Straile, Dietmar and Rothhaupt, Karl-Otto and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Blaha, Ludek and Geris, Rodan and Frankova, Marketa and Kocer, Mehmet Ali Turan and Alp, Mehmet Tahir and Remec-Rekar, Spela and Elersek, Tina and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Haande, Sigrid and Skjelbred, Birger and Madrecka, Beata and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Edwards, Christine and Sevindik, Tugba Ongun and Tunca, Hatice and OEnem, Burcin and Aleksovski, Boris and Krstic, Svetislav and Vucelic, Itana Bokan and Nawrocka, Lidia and Salmi, Pauliina and Machado-Vieira, Danielle and de Oliveira, Alinne Gurjao and Delgado-Martin, Jordi and Garcia, David and Cereijo, Jose Luis and Goma, Joan and Trapote, Mari Carmen and Vegas-Vilarrubia, Teresa and Obrador, Biel and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and Ubeda, Barbara and Angel Galvez, Jose and Ozen, Arda and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Kobos, Justyna and Mazur-Marzec, Hanna and Perez-Martinez, Carmen and Ramos-Rodriguez, Eloisa and Arvola, Lauri and Alcaraz-Parraga, Pablo and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Niedzwiecki, Michal and Peczula, Wojciech and Leira, Manel and Hernandez, Armand and Moreno-Ostos, Enrique and Maria Blanco, Jose and Rodriguez, Valeriano and Juan Montes-Perez, Jorge and Palomino, Roberto L. and Rodriguez-Perez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Miguel Soria, Juan and Dunalska, Julita and Sienska, Justyna and Szymanski, Daniel and Kruk, Marek and Kostrzewska-Szlakowska, Iwona and Jasser, Iwona and Zutinic, Petar and Udovic, Marija Gligora and Plenkovic-Moraj, Andelka and Frak, Magdalena and Bankowska-Sobczak, Agnieszka and Wasilewicz, Michal and Ozkan, Korhan and Maliaka, Valentini and Kangro, Kersti and Grossart, Hans-Peter and Paerl, Hans W. and Carey, Cayelan C. and Ibelings, Bas W.}, title = {Temperature effects explain continental scale distribution of cyanobacterial toxins}, series = {Toxins}, volume = {10}, journal = {Toxins}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2072-6651}, doi = {10.3390/toxins10040156}, pages = {24}, year = {2018}, abstract = {Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.}, language = {en} } @article{MantzoukiCampbellvanLoonetal.2018, author = {Mantzouki, Evanthia and Campbell, James and van Loon, Emiel and Visser, Petra and Konstantinou, Iosif and Antoniou, Maria and Giuliani, Gregory and Machado-Vieira, Danielle and de Oliveira, Alinne Gurjao and Maronic, Dubravka Spoljaric and Stevic, Filip and Pfeiffer, Tanja Zuna and Vucelic, Itana Bokan and Zutinic, Petar and Udovic, Marija Gligora and Plenkovic-Moraj, Andelka and Tsiarta, Nikoletta and Blaha, Ludek and Geris, Rodan and Frankova, Marketa and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Feldmann, Tonu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Kangro, Kersti and Haggqvist, Kerstin and Salmi, Pauliina and Arvola, Lauri and Fastner, Jutta and Straile, Dietmar and Rothhaupt, Karl-Otto and Fonvielle, Jeremy Andre and Grossart, Hans-Peter and Avagianos, Christos and Kaloudis, Triantafyllos and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Gkelis, Spyros and Panou, Manthos and McCarthy, Valerie and Perello, Victor C. and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Koreiviene, Judita and Karosiene, Jurate and Kasperoviciene, Jurate and Savadova, Ksenija and Vitonyte, Irma and Haande, Sigrid and Skjelbred, Birger and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and Nawrocka, Lidia and Kobos, Justyna and Mazur-Marzec, Hanna and Alcaraz-Parraga, Pablo and Wilk-Wozniak, Elzbieta and Krzton, Wojciech and Walusiak, Edward and Gagala, Ilona and Mankiewicz-Boczek, Joana and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Niedzwiecki, Michal and Peczula, Wojciech and Napiorkowska-Krzebietke, Agnieszka and Dunalska, Julita and Sienska, Justyna and Szymanski, Daniel and Kruk, Marek and Budzynska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosinska, Joanna and Szelag-Wasielewska, Elzbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pelechata, Aleksandra and Pelechaty, Mariusz and Kokocinski, Mikolaj and Madrecka, Beata and Kostrzewska-Szlakowska, Iwona and Frak, Magdalena and Bankowska-Sobczak, Agnieszka and Wasilewicz, Michal and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Jasser, Iwona and Antao-Geraldes, Ana M. and Leira, Manel and Hernandez, Armand and Vasconcelos, Vitor and Morais, Joao and Vale, Micaela and Raposeiro, Pedro M. and Goncalves, Vitor and Aleksovski, Boris and Krstic, Svetislav and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Remec-Rekar, Spela and Elersek, Tina and Delgado-Martin, Jordi and Garcia, David and Luis Cereijo, Jose and Goma, Joan and Carmen Trapote, Mari and Vegas-Vilarrubia, Teresa and Obrador, Biel and Garcia-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Parreno Duque, David and Fernandez-Moran, Elisabeth and Ubeda, Barbara and Angel Galvez, Jose and Marce, Rafael and Catalan, Nuria and Perez-Martinez, Carmen and Ramos-Rodriguez, Eloisa and Cillero-Castro, Carmen and Moreno-Ostos, Enrique and Maria Blanco, Jose and Rodriguez, Valeriano and Juan Montes-Perez, Jorge and Palomino, Roberto L. and Rodriguez-Perez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Soria, Juan Miguel and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Ozen, Arda and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Verspagen, Jolanda M. H. and Domis, Lisette N. de Senerpont and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Lurling, Miquel and Maliaka, Valentini and Faassen, Elisabeth J. and Latour, Delphine and Carey, Cayelan C. and Paerl, Hans W. and Torokne, Andrea and Karan, Tunay and Demir, Nilsun and Beklioglu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Ugur and Bezirci, Gizem and Tavsanoglu, Ulku Nihan and Celik, Kemal and Ozhan, Koray and Karakaya, Nusret and Kocer, Mehmet Ali Turan and Yilmaz, Mete and Maraslioglu, Faruk and Fakioglu, Ozden and Soylu, Elif Neyran and Yagci, Meral Apaydin and Cinar, Sakir and Capkin, Kadir and Yagci, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Koker, Latife and Akcaalan, Reyhan and Albay, Meric and Alp, Mehmet Tahir and Ozkan, Korhan and Sevindik, Tugba Ongun and Tunca, Hatice and Onem, Burcin and Richardson, Jessica and Edwards, Christine and Bergkemper, Victoria and Beirne, Eilish and Cromie, Hannah and Ibelings, Bastiaan W.}, title = {Data Descriptor: A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins}, series = {Scientific Data}, volume = {5}, journal = {Scientific Data}, publisher = {Nature Publ. Group}, address = {London}, issn = {2052-4463}, doi = {10.1038/sdata.2018.226}, pages = {13}, year = {2018}, abstract = {Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.}, language = {en} } @misc{MantzoukiLuerlingFastneretal.2018, author = {Mantzouki, Evanthia and L{\"u}rling, Miquel and Fastner, Jutta and Domis, Lisette Nicole de Senerpont and Wilk-Wo{\'{z}}niak, Elżbieta and Koreiviene, Judita and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Krztoń, Wojciech and Walusiak, Edward and Karosienė, Jūratė and Kasperovičienė, Jūratė and Savadova, Ksenija and Vitonytė, Irma and Cillero-Castro, Carmen and Budzyńska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosińska, Joanna and Szeląg-Wasielewska, Elżbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pełechata, Aleksandra and Pełechaty, Mariusz and Kokocinski, Mikolaj and Garc{\´i}a-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Duque, David Parre{\~n}o and Fern{\´a}ndez-Mor{\´a}n, El{\´i}sabeth and Karakaya, Nusret and H{\"a}ggqvist, Kerstin and Beklioğlu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Uğur and Bezirci, Gizem and Tav{\c{s}}anoğlu, {\"U}lk{\"u} Nihan and {\"O}zhan, Koray and Gkelis, Spyros and Panou, Manthos and Fakioglu, {\"O}zden and Avagianos, Christos and Kaloudis, Triantafyllos and {\c{C}}elik, Kemal and Yilmaz, Mete and Marc{\´e}, Rafael and Catal{\´a}n, Nuria and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Raposeiro, Pedro M. and Gon{\c{c}}alves, V{\´i}tor and Antoniou, Maria G. and Tsiarta, Nikoletta and McCarthy, Valerie and Perello, Victor C. and Feldmann, T{\~o}nu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Gagala, Ilona and Mankiewicz-Boczek, Joana and Yağc{\i}, Meral Apayd{\i}n and {\c{C}}{\i}nar, Şakir and {\c{C}}apk{\i}n, Kadir and Yağc{\i}, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Richardson, Jessica and Visser, Petra M. and Verspagen, Jolanda M. H. and Karan, T{\"u}nay and Soylu, Elif Neyran and Mara{\c{s}}l{\i}oğlu, Faruk and Napi{\´o}rkowska-Krzebietke, Agnieszka and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Ant{\~a}o-Geraldes, Ana M. and Vasconcelos, Vitor and Morais, Jo{\~a}o and Vale, Micaela and K{\"o}ker, Latife and Ak{\c{c}}aalan, Reyhan and Albay, Meri{\c{c}} and Maronić, Dubravka Špoljarić and Stević, Filip and Pfeiffer, Tanja Žuna and Fonvielle, Jeremy Andre and Straile, Dietmar and Rothhaupt, Karl-Otto and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Bl{\´a}ha, Luděk and Geriš, Rodan and Fr{\´a}nkov{\´a}, Mark{\´e}ta and Ko{\c{c}}er, Mehmet Ali Turan and Alp, Mehmet Tahir and Remec-Rekar, Spela and Elersek, Tina and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Haande, Sigrid and Skjelbred, Birger and Madrecka, Beata and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Edwards, Christine and Sevindik, Tuğba Ongun and Tunca, Hatice and {\"O}nem, Bur{\c{c}}in and Aleksovski, Boris and Krstić, Svetislav and Vucelić, Itana Bokan and Nawrocka, Lidia and Salmi, Pauliina and Machado-Vieira, Danielle and Oliveira, Alinne Gurj{\~a}o De and Delgado-Mart{\´i}n, Jordi and Garc{\´i}a, David and Cereijo, Jose Lu{\´i}s and Gom{\`a}, Joan and Trapote, Mari Carmen and Vegas-Vilarr{\´u}bia, Teresa and Obrador, Biel and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and {\´U}beda, B{\´a}rbara and G{\´a}lvez, Jos{\´e} {\´A}ngel and {\"O}zen, Arda and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Kobos, Justyna and Mazur-Marzec, Hanna and P{\´e}rez-Mart{\´i}nez, Carmen and Ramos-Rodr{\´i}guez, Elo{\´i}sa and Arvola, Lauri and Alcaraz-P{\´a}rraga, Pablo and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Nied{\'{z}}wiecki, Michał and Pęczuła, Wojciech and Leira, Manel and Hern{\´a}ndez, Armand and Moreno-Ostos, Enrique and Blanco, Jos{\´e} Mar{\´i}a and Rodr{\´i}guez, Valeriano and Montes-P{\´e}rez, Jorge Juan and Palomino, Roberto L. and Rodr{\´i}guez-P{\´e}rez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Soria, Juan Miguel and Dunalska, Julita and Sieńska, Justyna and Szymański, Daniel and Kruk, Marek and Kostrzewska-Szlakowska, Iwona and Jasser, Iwona and Žutinić, Petar and Udovič, Marija Gligora and Plenković-Moraj, Anđelka and Frąk, Magdalena and Bańkowska-Sobczak, Agnieszka and Wasilewicz, Michał and {\"O}zkan, Korhan and Maliaka, Valentini and Kangro, Kersti and Grossart, Hans-Peter and Paerl, Hans W. and Carey, Cayelan C. and Ibelings, Bas W.}, title = {Temperature effects explain continental scale distribution of cyanobacterial toxins}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1105}, issn = {1866-8372}, doi = {10.25932/publishup-42790}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427902}, pages = {26}, year = {2018}, abstract = {Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.}, language = {en} } @misc{TangMcGinnisIonescuetal.2016, author = {Tang, Kam W. and McGinnis, Daniel F. and Ionescu, Danny and Großart, Hans-Peter}, title = {Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {3}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {American Chemical Society}, address = {Washington}, issn = {2328-8930}, doi = {10.1021/acs.estlett.6b00150}, pages = {227 -- 233}, year = {2016}, abstract = {Active methane production in oxygenated lake waters challenges the long-standing paradigm that microbial methane production occurs only under anoxic conditions and forces us to rethink the ecology and environmental dynamics of this powerful greenhouse gas. Methane production in the upper oxic water layers places the methane source closer to the air water interface, where convective mixing and microbubble detrainment can lead to a methane efflux higher than that previously assumed. Microorganisms may produce methane in oxic environments by being equipped with enzymes to counteract the effects of molecular oxygen during methanogenesis or using alternative pathways that do not involve oxygen-sensitive enzymes. As this process appears to be influenced by thermal stratification, water transparency, and primary production, changes in lake ecology due to climate change will alter methane formation in oxic water layers, with far-reaching consequences for methane flux and climate feedback.}, language = {en} } @article{TangFluryGrossartetal.2017, author = {Tang, Kam W. and Flury, Sabine and Grossart, Hans-Peter and McGinnis, Daniel F.}, title = {The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes}, series = {Water research}, volume = {122}, journal = {Water research}, publisher = {Elsevier}, address = {Oxford}, issn = {0043-1354}, doi = {10.1016/j.watres.2017.05.058}, pages = {36 -- 41}, year = {2017}, abstract = {Hypolimnetic oxygen demand in lakes is often assumed to be driven mainly by sediment microbial processes, while the role of Chaoborus larvae, which are prevalent in eutrophic lakes with hypoxic to anoxic bottoms, has been overlooked. We experimentally measured the respiration rates of C flavicans at different temperatures yielding a Q(10) of 1.44-1.71 and a respiratory quotient of 0.84-0.98. Applying the experimental data in a system analytical approach, we showed that migrating Chaoborus larvae can significantly add to the water column and sediment oxygen demand, and contribute to the observed linear relationship between water column respiration and depth. The estimated phosphorus excretion by Chaoborus in sediment is comparable in magnitude to the required phosphorus loading for eutrophication. Migrating Chaoborus larvae thereby essentially trap nutrients between the water column and the sediment, and this continuous internal loading of nutrients would delay lake remediation even when external inputs are stopped. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchmidtHennkeKnocheletal.2010, author = {Schmidt, Marco and Hennke, Thomas and Knochel, Mira and Kurten, Achim and Hierholzer, Johannes and Daniel, Peter and Bittmann, Frank}, title = {Can chronic irritations of the trigeminal nerve cause musculoskeletal disorders?}, issn = {1021-7096}, doi = {10.1159/000315338}, year = {2010}, abstract = {In this article, five cases of odontogenous dysfunctions and musculoskeletal complaints are presented. A common finding in all patients of this study was that the presence of joint complaints was related to deficits in the corresponding muscular function. These deficits were determined by manual muscle tests as described by Kendall et al. [Muscles - Testing and Function, ed 4. Baltimore, Williams and Wilkins, 1993] and were eliminated immediately by a neural therapeutic test injection into the disturbed dental region. The therapy provided solely aimed to eliminate the odontogenous dysfunction. No other therapeutic measures were carried out with regard to the patients' respective muscle, tendon, or joint complaints.}, language = {en} } @article{GossnerLewinsohnKahletal.2016, author = {Gossner, Martin M. and Lewinsohn, Thomas M. and Kahl, Tiemo and Grassein, Fabrice and Boch, Steffen and Prati, Daniel and Birkhofer, Klaus and Renner, Swen C. and Sikorski, Johannes and Wubet, Tesfaye and Arndt, Hartmut and Baumgartner, Vanessa and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Jorge, Leonardo Re and Jung, Kirsten and Keyel, Alexander C. and Klein, Alexandra-Maria and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Overmann, J{\"o}rg and Pasalic, Esther and Penone, Caterina and Perovic, David J. and Purschke, Oliver and Schall, Peter and Socher, Stephanie A. and Sonnemann, Ilja and Tschapka, Marco and Tscharntke, Teja and T{\"u}rke, Manfred and Venter, Paul Christiaan and Weiner, Christiane N. and Werner, Michael and Wolters, Volkmar and Wurst, Susanne and Westphal, Catrin and Fischer, Markus and Weisser, Wolfgang W. and Allan, Eric}, title = {Land-use intensification causes multitrophic homogenization of grassland communities}, series = {Nature : the international weekly journal of science}, volume = {540}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature20575}, pages = {266 -- +}, year = {2016}, abstract = {Land-use intensification is a major driver of biodiversity loss(1,2). Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in beta-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (alpha)-diversity(1,3) and neglected biodiversity loss at larger spatial scales. Studies addressing beta-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above-and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in alpha-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on beta-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in beta-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local alpha-diversity in aboveground groups, whereas the alpha-diversity increased in belowground groups. Correlations between the alpha-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.}, language = {en} } @article{SoliveresManningPratietal.2016, author = {Soliveres, Santiago and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bluethgen, Nico and Boch, Steffen and Boehm, Stefan and Boerschig, Carmen and Buscot, Francois and Diekoetter, Tim and Heinze, Johannes and Hoelzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra-Maria and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and Mueller, Joerg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Renner, Swen C. and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Schoening, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Tuerke, Manfred and Venter, Paul and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Locally rare species influence grassland ecosystem multifunctionality}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {371}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2015.0269}, pages = {3175 -- 3185}, year = {2016}, abstract = {Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6\% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.}, language = {en} } @article{LiemohnMcColloughJordanovaetal.2018, author = {Liemohn, Michael W. and McCollough, James P. and Jordanova, Vania K. and Ngwira, Chigomezyo M. and Morley, Steven K. and Cid, Consuelo and Tobiska, W. Kent and Wintoft, Peter and Ganushkina, Natalia Yu and Welling, Daniel T. and Bingham, Suzy and Balikhin, Michael A. and Opgenoorth, Hermann J. and Engel, Miles A. and Weigel, Robert S. and Singer, Howard J. and Buresova, Dalia and Bruinsma, Sean and Zhelavskaya, Irina and Shprits, Yuri Y. and Vasile, Ruggero}, title = {Model Evaluation Guidelines for Geomagnetic Index Predictions}, series = {Space Weather: The International Journal of Research and Applications}, volume = {16}, journal = {Space Weather: The International Journal of Research and Applications}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2018SW002067}, pages = {2079 -- 2102}, year = {2018}, abstract = {Geomagnetic indices are convenient quantities that distill the complicated physics of some region or aspect of near-Earth space into a single parameter. Most of the best-known indices are calculated from ground-based magnetometer data sets, such as Dst, SYM-H, Kp, AE, AL, and PC. Many models have been created that predict the values of these indices, often using solar wind measurements upstream from Earth as the input variables to the calculation. This document reviews the current state of models that predict geomagnetic indices and the methods used to assess their ability to reproduce the target index time series. These existing methods are synthesized into a baseline collection of metrics for benchmarking a new or updated geomagnetic index prediction model. These methods fall into two categories: (1) fit performance metrics such as root-mean-square error and mean absolute error that are applied to a time series comparison of model output and observations and (2) event detection performance metrics such as Heidke Skill Score and probability of detection that are derived from a contingency table that compares model and observation values exceeding (or not) a threshold value. A few examples of codes being used with this set of metrics are presented, and other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, including several caveats to consider when using geomagnetic indices. Plain Language Summary One aspect of space weather is a magnetic signature across the surface of the Earth. The creation of this signal involves nonlinear interactions of electromagnetic forces on charged particles and can therefore be difficult to predict. The perturbations that space storms and other activity causes in some observation sets, however, are fairly regular in their pattern. Some of these measurements have been compiled together into a single value, a geomagnetic index. Several such indices exist, providing a global estimate of the activity in different parts of geospace. Models have been developed to predict the time series of these indices, and various statistical methods are used to assess their performance at reproducing the original index. Existing studies of geomagnetic indices, however, use different approaches to quantify the performance of the model. This document defines a standardized set of statistical analyses as a baseline set of comparison tools that are recommended to assess geomagnetic index prediction models. It also discusses best practices, limitations, uncertainties, and caveats to consider when conducting a model assessment.}, language = {en} } @article{TangMcGinnisFrindteetal.2014, author = {Tang, Kam W. and McGinnis, Daniel F. and Frindte, Katharina and Bruchert, Volker and Grossart, Hans-Peter}, title = {Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters}, series = {Limnology and oceanography}, volume = {59}, journal = {Limnology and oceanography}, number = {1}, publisher = {Wiley}, address = {Waco}, issn = {0024-3590}, doi = {10.4319/lo.2014.59.1.0275}, pages = {275 -- 284}, year = {2014}, abstract = {The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water was up to 5 mmol m(-2) d(-1). Mid-water methane oversaturation was also observed in nine other lakes that collectively showed a strongly negative gradient of methane concentration within 0-20\% dissolved oxygen (DO) in the bottom water, and a positive gradient within >= 20\% DO in the upper water column. Further investigation into the responsible organisms and biochemical pathways will help improve our understanding of the global methane cycle.}, language = {en} } @article{GaalSchickHerzogetal.2014, author = {Gaal, Peter and Schick, Daniel and Herzog, Marc and Bojahr, Andre and Shayduk, Roman and Goldshteyn, Jevgeni and Leitenberger, Wolfram and Vrejoiu, Ionela and Khakhulin, Dmitry and Wulff, Michael and Bargheer, Matias}, title = {Ultrafast switching of hard X-rays}, series = {Journal of synchrotron radiation}, volume = {21}, journal = {Journal of synchrotron radiation}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0909-0495}, doi = {10.1107/S1600577513031949}, pages = {380 -- 385}, year = {2014}, abstract = {A new concept for shortening hard X-ray pulses emitted from a third-generation synchrotron source down to few picoseconds is presented. The device, called the PicoSwitch, exploits the dynamics of coherent acoustic phonons in a photo-excited thin film. A characterization of the structure demonstrates switching times of <= 5 ps and a peak reflectivity of similar to 10(-3). The device is tested in a real synchrotron-based pump-probe experiment and reveals features of coherent phonon propagation in a second thin film sample, thus demonstrating the potential to significantly improve the temporal resolution at existing synchrotron facilities.}, language = {en} } @article{NavirianSchickGaaletal.2014, author = {Navirian, Hengameh A. and Schick, Daniel and Gaal, Peter and Leitenberger, Wolfram and Shayduk, Roman and Bargheer, Matias}, title = {Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate}, series = {Applied physics letters}, volume = {104}, journal = {Applied physics letters}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4861873}, pages = {4}, year = {2014}, abstract = {We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO3 electrode sandwiched between a ferroelectric Pb(Zr0.2Ti0.8)O-3 film with negative thermal expansion and a SrTiO3 substrate. SrRuO3 is rapidly heated by fs-laser pulses with 208 kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120 ps to 5 mu s with a relative accuracy up to Delta c/c = 10(-6). The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr0.2Ti0.8)O-3.}, language = {en} } @article{SchickShaydukBojahretal.2013, author = {Schick, Daniel and Shayduk, Roman and Bojahr, Andre and Herzog, Marc and von Korff Schmising, Clemens and Gaal, Peter and Bargheer, Matias}, title = {Ultrafast reciprocal-space mapping with a convergent beam}, series = {JOURNAL OF APPLIED CRYSTALLOGRAPHY}, volume = {46}, journal = {JOURNAL OF APPLIED CRYSTALLOGRAPHY}, number = {10}, publisher = {WILEY-BLACKWELL}, address = {HOBOKEN}, issn = {0021-8898}, doi = {10.1107/S0021889813020013}, pages = {1372 -- 1377}, year = {2013}, abstract = {A diffractometer setup is presented, based on a laser-driven plasma X-ray source for reciprocal-space mapping with femtosecond temporal resolution. In order to map out the reciprocal space, an X-ray optic with a convergent beam is used with an X-ray area detector to detect symmetrically and asymmetrically diffracted X-ray photons simultaneously. The setup is particularly suited for measuring thin films or imperfect bulk samples with broad rocking curves. For quasi-perfect crystalline samples with insignificant in-plane Bragg peak broadening, the measured reciprocal-space maps can be corrected for the known resolution function of the diffractometer in order to achieve high-resolution rocking curves with improved data quality. In this case, the resolution of the diffractometer is not limited by the convergence of the incoming X-ray beam but is solely determined by its energy bandwidth.}, language = {en} } @article{HoffmannKaneNettelsetal.2007, author = {Hoffmann, Armin S. and Kane, Avinash S. and Nettels, Daniel and Hertzog, David E. and Baumg{\"a}rtel, Peter and Lengefeld, Jan and Reichardt, Gerd and Horsley, David A. and Seckler, Robert and Bakajin, Olgica and Schuler, Benjamin}, title = {Mapping protein collapse with single molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy}, issn = {0027-8424}, year = {2007}, language = {en} } @article{CohenHershcovitchTarazetal.2023, author = {Cohen, Sarel and Hershcovitch, Moshik and Taraz, Martin and Kissig, Otto and Issac, Davis and Wood, Andrew and Waddington, Daniel and Chin, Peter and Friedrich, Tobias}, title = {Improved and optimized drug repurposing for the SARS-CoV-2 pandemic}, series = {PLoS one}, volume = {18}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0266572}, pages = {13}, year = {2023}, abstract = {The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on knowledge graphs, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently developed the Dr-COVID model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the Dr-COVID model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware-we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking.}, language = {en} } @article{DerežaninBlažytėDobryninetal.2022, author = {Derežanin, Lorena and Blažytė, Asta and Dobrynin, Pavel and Duch{\^e}ne, David A. and Grau, Jos{\´e} Horacio and Jeon, Sungwon and Kliver, Sergei and Koepfli, Klaus-Peter and Meneghini, Dorina and Preick, Michaela and Tomarovsky, Andrey and Totikov, Azamat and Fickel, J{\"o}rns and F{\"o}rster, Daniel W.}, title = {Multiple types of genomic variation contribute to adaptive traits in the mustelid subfamily Guloninae}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16443}, pages = {2898 -- 2919}, year = {2022}, abstract = {Species of the mustelid subfamily Guloninae inhabit diverse habitats on multiple continents, and occupy a variety of ecological niches. They differ in feeding ecologies, reproductive strategies and morphological adaptations. To identify candidate loci associated with adaptations to their respective environments, we generated a de novo assembly of the tayra (Eira barbara), the earliest diverging species in the subfamily, and compared this with the genomes available for the wolverine (Gulo gulo) and the sable (Martes zibellina). Our comparative genomic analyses included searching for signs of positive selection, examining changes in gene family sizes and searching for species-specific structural variants. Among candidate loci associated with phenotypic traits, we observed many related to diet, body condition and reproduction. For example, for the tayra, which has an atypical gulonine reproductive strategy of aseasonal breeding, we observed species-specific changes in many pregnancy-related genes. For the wolverine, a circumpolar hypercarnivore that must cope with seasonal food scarcity, we observed many changes in genes associated with diet and body condition. All types of genomic variation examined (single nucleotide polymorphisms, gene family expansions, structural variants) contributed substantially to the identification of candidate loci. This argues strongly for consideration of variation other than single nucleotide polymorphisms in comparative genomics studies aiming to identify loci of adaptive significance.}, language = {en} } @misc{CescaStichGrigolietal.2022, author = {Cesca, Simone and Stich, Daniel and Grigoli, Francesco and Vuan, Alessandro and L{\´o}pez-Comino, Jos{\´e} {\´A}ngel and Niemz, Peter and Blanch, Estefan{\´i}a and Dahm, Torsten and Ellsworth, William L.}, title = {Reply to: Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring}, series = {Nature communications}, volume = {13}, journal = {Nature communications}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-022-30904-5}, pages = {4}, year = {2022}, language = {en} } @article{PotenteLeveilleBourretYousefietal.2022, author = {Potente, Giacomo and L{\´e}veill{\´e}-Bourret, {\´E}tienne and Yousefi, Narjes and Choudhury, Rimjhim Roy and Keller, Barbara and Diop, Seydina Issa and Duijsings, Dani{\"e}l and Pirovano, Walter and Lenhard, Michael and Sz{\"o}v{\´e}nyi, P{\´e}ter and Conti, Elena}, title = {Comparative genomics elucidates the origin of a supergene controlling floral heteromorphism}, series = {Molecular biology and evolution : MBE}, volume = {39}, journal = {Molecular biology and evolution : MBE}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msac035}, pages = {16}, year = {2022}, abstract = {Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?}, language = {en} } @article{SchickHerzogWenetal.2014, author = {Schick, Daniel and Herzog, Marc and Wen, Haidan and Chen, Pice and Adamo, Carolina and Gaal, Peter and Schlom, Darrell G. and Evans, Paul G. and Li, Yuelin and Bargheer, Matias}, title = {Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3}, series = {Physical review letters}, volume = {112}, journal = {Physical review letters}, number = {9}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.112.097602}, pages = {6}, year = {2014}, abstract = {We apply ultrafast x-ray diffraction with femtosecond temporal resolution to monitor the lattice dynamics in a thin film of multiferroic BiFeO3 after above-band-gap photoexcitation. The sound-velocity limited evolution of the observed lattice strains indicates a quasi-instantaneous photoinduced stress which decays on a nanosecond time scale. This stress exhibits an inhomogeneous spatial profile evidenced by the broadening of the Bragg peak. These new data require substantial modification of existing models of photogenerated stresses in BiFeO3: the relevant excited charge carriers must remain localized to be consistent with the data.}, language = {en} } @article{ShaydukHerzogBojahretal.2013, author = {Shayduk, Roman and Herzog, Marc and Bojahr, Andre and Schick, Daniel and Gaal, Peter and Leitenberger, Wolfram and Navirian, Hengameh and Sander, Mathias and Goldshteyn, Jevgenij and Vrejoiu, Ionela and Bargheer, Matias}, title = {Direct time-domain sampling of subterahertz coherent acoustic phonon spectra in SrTiO3 using ultrafast x-ray diffraction}, series = {Physical review : B, Condensed matter and materials physics}, volume = {87}, journal = {Physical review : B, Condensed matter and materials physics}, number = {18}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.87.184301}, pages = {7}, year = {2013}, abstract = {We synthesize sub-THz longitudinal quasimonochromatic acoustic phonons in a SrTiO3 single crystal using a SrRuO3/SrTiO3 superlattice as an optical-acoustic transducer. The generated acoustic phonon spectrum is determined using ultrafast x-ray diffraction. The analysis of the generated phonon spectrum in the time domain reveals a k-vector dependent phonon lifetime. It is observed that even at sub-THz frequencies the phonon lifetime agrees with the 1/omega(2) power law known from Akhiezer's model for hyper sound attenuation. The observed shift of the synthesized spectrum to the higher q is discussed in the framework of nonlinear effects appearing due to the high amplitude of the synthesized phonons.}, language = {en} } @article{GoldshteynBojahrGaaletal.2014, author = {Goldshteyn, Jevgeni and Bojahr, Andre and Gaal, Peter and Schick, Daniel and Bargheer, Matias}, title = {Selective preparation and detection of phonon polariton wavepackets by stimulated Raman scattering}, series = {Physica status solidi : Physica status solidi}, volume = {251}, journal = {Physica status solidi : Physica status solidi}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0370-1972}, doi = {10.1002/pssb.201350114}, pages = {821 -- 828}, year = {2014}, abstract = {Wavevector-selective impulsive excitation of phonon-polaritons by a spectrally broad femtosecond transient grating produces wavepackets propagating in opposite directions. The photons in spectrally narrow probe pulses are scattered from these elementary excitations in lithium niobate (LiNbO3). Both elastically and inelastically scattered photons are simultaneously detected in a spectrometer. The Stokes- and anti-Stokes shifted probe pulses uniquely determine the propagation direction of the detected polariton wavepacket components and correspond to creation or annihilation of phonon-polaritons. Our experiments with spectrally broad pump and spectrally narrow probe pulses allows dissecting the four-wave-mixing process into two sequential stimulated Raman scattering events.}, language = {en} } @article{HiltGrossartMcGinnisetal.2022, author = {Hilt, Sabine and Grossart, Hans-Peter and McGinnis, Daniel F. and Keppler, Frank}, title = {Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems}, series = {Limnology and oceanography}, journal = {Limnology and oceanography}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.12095}, pages = {13}, year = {2022}, abstract = {Methane (CH4) from aquatic ecosystems contributes to about half of total global CH4 emissions to the atmosphere. Until recently, aquatic biogenic CH4 production was exclusively attributed to methanogenic archaea living under anoxic or suboxic conditions in sediments, bottom waters, and wetlands. However, evidence for oxic CH4 production (OMP) in freshwater, brackish, and marine habitats is increasing. Possible sources were found to be driven by various planktonic organisms supporting different OMP mechanisms. Surprisingly, submerged macrophytes have been fully ignored in studies on OMP, yet they are key components of littoral zones of ponds, lakes, and coastal systems. High CH4 concentrations in these zones have been attributed to organic substrate production promoting classic methanogenesis in the absence of oxygen. Here, we review existing studies and argue that, similar to terrestrial plants and phytoplankton, macroalgae and submerged macrophytes may directly or indirectly contribute to CH4 formation in oxic waters. We propose several potential direct and indirect mechanisms: (1) direct production of CH4; (2) production of CH4 precursors and facilitation of their bacterial breakdown or chemical conversion; (3) facilitation of classic methanogenesis; and (4) facilitation of CH4 ebullition. As submerged macrophytes occur in many freshwater and marine habitats, they are important in global carbon budgets and can strongly vary in their abundance due to seasonal and boom-bust dynamics. Knowledge on their contribution to OMP is therefore essential to gain a better understanding of spatial and temporal dynamics of CH4 emissions and thus to substantially reduce current uncertainties when estimating global CH4 emissions from aquatic ecosystems.}, language = {en} } @article{SeboldNebeGarbusowetal.2017, author = {Sebold, Miriam and Nebe, Stephan and Garbusow, Maria and Guggenmos, Matthias and Schad, Daniel and Beck, Anne and Kuitunen-Paul, S{\"o}ren and Sommer, Christian and Frank, Robin and Neu, Peter and Zimmermann, Ulrich S. and Rapp, Michael A. and Smolka, Michael N. and Huys, Quentin J. M. and Schlagenhauf, Florian and Heinz, Andreas}, title = {When Habits Are Dangerous: Alcohol Expectancies and Habitual Decision Making Predict Relapse in Alcohol Dependence}, series = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, volume = {82}, journal = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, publisher = {Elsevier}, address = {New York}, issn = {0006-3223}, doi = {10.1016/j.biopsych.2017.04.019}, pages = {847 -- 856}, year = {2017}, abstract = {BACKGROUND: Addiction is supposedly characterized by a shift from goal-directed to habitual decision making, thus facilitating automatic drug intake. The two-step task allows distinguishing between these mechanisms by computationally modeling goal-directed and habitual behavior as model-based and model-free control. In addicted patients, decision making may also strongly depend upon drug-associated expectations. Therefore, we investigated model-based versus model-free decision making and its neural correlates as well as alcohol expectancies in alcohol-dependent patients and healthy controls and assessed treatment outcome in patients. METHODS: Ninety detoxified, medication-free, alcohol-dependent patients and 96 age-and gender-matched control subjects underwent functional magnetic resonance imaging during the two-step task. Alcohol expectancies were measured with the Alcohol Expectancy Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained abstinent and 53 patients relapsed as indicated by the Alcohol Timeline Followback method. RESULTS: Patients who relapsed displayed reduced medial prefrontal cortex activation during model-based decision making. Furthermore, high alcohol expectancies were associated with low model-based control in relapsers, while the opposite was observed in abstainers and healthy control subjects. However, reduced model-based control per se was not associated with subsequent relapse. CONCLUSIONS: These findings suggest that poor treatment outcome in alcohol dependence does not simply result from a shift from model-based to model-free control but is instead dependent on the interaction between high drug expectancies and low model-based decision making. Reduced model-based medial prefrontal cortex signatures in those who relapse point to a neural correlate of relapse risk. These observations suggest that therapeutic interventions should target subjective alcohol expectancies.}, language = {en} }