@article{MiddeldorpMahajanHorikoshietal.2019, author = {Middeldorp, Christel M. and Mahajan, Anubha and Horikoshi, Momoko and Robertson, Neil R. and Beaumont, Robin N. and Bradfield, Jonathan P. and Bustamante, Mariona and Cousminer, Diana L. and Day, Felix R. and De Silva, N. Maneka and Guxens, Monica and Mook-Kanamori, Dennis O. and St Pourcain, Beate and Warrington, Nicole M. and Adair, Linda S. and Ahlqvist, Emma and Ahluwalia, Tarunveer Singh and Almgren, Peter and Ang, Wei and Atalay, Mustafa and Auvinen, Juha and Bartels, Meike and Beckmann, Jacques S. and Bilbao, Jose Ramon and Bond, Tom and Borja, Judith B. and Cavadino, Alana and Charoen, Pimphen and Chen, Zhanghua and Coin, Lachlan and Cooper, Cyrus and Curtin, John A. and Custovic, Adnan and Das, Shikta and Davies, Gareth E. and Dedoussis, George V. and Duijts, Liesbeth and Eastwood, Peter R. and Eliasen, Anders U. and Elliott, Paul and Eriksson, Johan G. and Estivill, Xavier and Fadista, Joao and Fedko, Iryna O. and Frayling, Timothy M. and Gaillard, Romy and Gauderman, W. James and Geller, Frank and Gilliland, Frank and Gilsanz, Vincente and Granell, Raquel and Grarup, Niels and Groop, Leif and Hadley, Dexter and Hakonarson, Hakon and Hansen, Torben and Hartman, Catharina A. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Hebebrand, Johannes and Heinrich, Joachim and Helgeland, Oyvind and Henders, Anjali K. and Henderson, John and Henriksen, Tine B. and Hirschhorn, Joel N. and Hivert, Marie-France and Hocher, Berthold and Holloway, John W. and Holt, Patrick and Hottenga, Jouke-Jan and Hypponen, Elina and Iniguez, Carmen and Johansson, Stefan and Jugessur, Astanand and Kahonen, Mika and Kalkwarf, Heidi J. and Kaprio, Jaakko and Karhunen, Ville and Kemp, John P. and Kerkhof, Marjan and Koppelman, Gerard H. and Korner, Antje and Kotecha, Sailesh and Kreiner-Moller, Eskil and Kulohoma, Benard and Kumar, Ashish and Kutalik, Zoltan and Lahti, Jari and Lappe, Joan M. and Larsson, Henrik and Lehtimaki, Terho and Lewin, Alexandra M. and Li, Jin and Lichtenstein, Paul and Lindgren, Cecilia M. and Lindi, Virpi and Linneberg, Allan and Liu, Xueping and Liu, Jun and Lowe, William L. and Lundstrom, Sebastian and Lyytikainen, Leo-Pekka and Ma, Ronald C. W. and Mace, Aurelien and Magi, Reedik and Magnus, Per and Mamun, Abdullah A. and Mannikko, Minna and Martin, Nicholas G. and Mbarek, Hamdi and McCarthy, Nina S. and Medland, Sarah E. and Melbye, Mads and Melen, Erik and Mohlke, Karen L. and Monnereau, Claire and Morgen, Camilla S. and Morris, Andrew P. and Murray, Jeffrey C. and Myhre, Ronny and Najman, Jackob M. and Nivard, Michel G. and Nohr, Ellen A. and Nolte, Ilja M. and Ntalla, Ioanna and Oberfield, Sharon E. and Oken, Emily and Oldehinkel, Albertine J. and Pahkala, Katja and Palviainen, Teemu and Panoutsopoulou, Kalliope and Pedersen, Oluf and Pennell, Craig E. and Pershagen, Goran and Pitkanen, Niina and Plomin, Robert and Power, Christine and Prasad, Rashmi B. and Prokopenko, Inga and Pulkkinen, Lea and Raikkonen, Katri and Raitakari, Olli T. and Reynolds, Rebecca M. and Richmond, Rebecca C. and Rivadeneira, Fernando and Rodriguez, Alina and Rose, Richard J. and Salem, Rany and Santa-Marina, Loreto and Saw, Seang-Mei and Schnurr, Theresia M. and Scott, James G. and Selzam, Saskia and Shepherd, John A. and Simpson, Angela and Skotte, Line and Sleiman, Patrick M. A. and Snieder, Harold and Sorensen, Thorkild I. A. and Standl, Marie and Steegers, Eric A. P. and Strachan, David P. and Straker, Leon and Strandberg, Timo and Taylor, Michelle and Teo, Yik-Ying and Thiering, Elisabeth and Torrent, Maties and Tyrrell, Jessica and Uitterlinden, Andre G. and van Beijsterveldt, Toos and van der Most, Peter J. and van Duijn, Cornelia M. and Viikari, Jorma and Vilor-Tejedor, Natalia and Vogelezang, Suzanne and Vonk, Judith M. and Vrijkotte, Tanja G. M. and Vuoksimaa, Eero and Wang, Carol A. and Watkins, William J. and Wichmann, H-Erich and Willemsen, Gonneke and Williams, Gail M. and Wilson, James F. and Wray, Naomi R. and Xu, Shujing and Xu, Cheng-Jian and Yaghootkar, Hanieh and Yi, Lu and Zafarmand, Mohammad Hadi and Zeggini, Eleftheria and Zemel, Babette S. and Hinney, Anke and Lakka, Timo A. and Whitehouse, Andrew J. O. and Sunyer, Jordi and Widen, Elisabeth E. and Feenstra, Bjarke and Sebert, Sylvain and Jacobsson, Bo and Njolstad, Pal R. and Stoltenberg, Camilla and Smith, George Davey and Lawlor, Debbie A. and Paternoster, Lavinia and Timpson, Nicholas J. and Ong, Ken K. and Bisgaard, Hans and Bonnelykke, Klaus and Jaddoe, Vincent W. V. and Tiemeier, Henning and Jarvelin, Marjo-Riitta and Evans, David M. and Perry, John R. B. and Grant, Struan F. A. and Boomsma, Dorret I. and Freathy, Rachel M. and McCarthy, Mark I. and Felix, Janine F.}, title = {The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia}, series = {European journal of epidemiology}, volume = {34}, journal = {European journal of epidemiology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, organization = {EArly Genetics Lifecourse EGG Consortium EGG Membership EAGLE Membership}, issn = {0393-2990}, doi = {10.1007/s10654-019-00502-9}, pages = {279 -- 300}, year = {2019}, abstract = {The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.}, language = {en} } @misc{HansenNiebauerCornelissenetal.2018, author = {Hansen, Dominique and Niebauer, Josef and Cornelissen, Veronique and Barna, Olga and Neunhaeuserer, Daniel and Stettler, Christoph and Tonoli, Cajsa and Greco, Eugenio and Fagard, Robert and Coninx, Karin and Vanhees, Luc and Piepoli, Massimo F. and Pedretti, Roberto and Ruiz, Gustavo Rovelo and Corra, Ugo and Schmid, Jean-Paul and Davos, Constantinos H. and Edelmann, Frank and Abreu, Ana and Rauch, Bernhard and Ambrosetti, Marco and Braga, Simona Sarzi and Beckers, Paul and Bussotti, Maurizio and Faggiano, Pompilio and Garcia-Porrero, Esteban and Kouidi, Evangelia and Lamotte, Michel and Reibis, Rona Katharina and Spruit, Martijn A. and Takken, Tim and Vigorito, Carlo and V{\"o}ller, Heinz and Doherty, Patrick and Dendale, Paul}, title = {Exercise prescription in patients with different combinations of cardiovascular disease risk factors}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {8}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0930-4}, pages = {1781 -- 1797}, year = {2018}, abstract = {Whereas exercise training is key in the management of patients with cardiovascular disease (CVD) risk (obesity, diabetes, dyslipidaemia, hypertension), clinicians experience difficulties in how to optimally prescribe exercise in patients with different CVD risk factors. Therefore, a consensus statement for state-of-the-art exercise prescription in patients with combinations of CVD risk factors as integrated into a digital training and decision support system (the EXercise Prescription in Everyday practice \& Rehabilitative Training (EXPERT) tool) needed to be established. EXPERT working group members systematically reviewed the literature for meta-analyses, systematic reviews and/or clinical studies addressing exercise prescriptions in specific CVD risk factors and formulated exercise recommendations (exercise training intensity, frequency, volume and type, session and programme duration) and exercise safety precautions, for obesity, arterial hypertension, type 1 and 2 diabetes, and dyslipidaemia. The impact of physical fitness, CVD risk altering medications and adverse events during exercise testing was further taken into account to fine-tune this exercise prescription. An algorithm, supported by the interactive EXPERT tool, was developed by Hasselt University based on these data. Specific exercise recommendations were formulated with the aim to decrease adipose tissue mass, improve glycaemic control and blood lipid profile, and lower blood pressure. The impact of medications to improve CVD risk, adverse events during exercise testing and physical fitness was also taken into account. Simulations were made of how the EXPERT tool provides exercise prescriptions according to the variables provided. In this paper, state-of-the-art exercise prescription to patients with combinations of CVD risk factors is formulated, and it is shown how the EXPERT tool may assist clinicians. This contributes to an appropriately tailored exercise regimen for every CVD risk patient.}, language = {en} } @article{GrottKnollenbergHammetal.2019, author = {Grott, Matthias and Knollenberg, J. and Hamm, M. and Ogawa, K. and Jaumann, R. and Otto, Katharina Alexandra and Delbo, M. and Michel, Patrick and Biele, J. and Neumann, Wladimir and Knapmeyer, Martin and K{\"u}hrt, E. and Senshu, H. and Okada, T. and Helbert, Jorn and Maturilli, A. and M{\"u}ller, N. and Hagermann, A. and Sakatani, Naoya and Tanaka, S. and Arai, T. and Mottola, Stefano and Tachibana, Shogo and Pelivan, Ivanka and Drube, Line and Vincent, J-B and Yano, Hajime and Pilorget, C. and Matz, K. D. and Schmitz, N. and Koncz, A. and Schr{\"o}der, Stefan E. and Trauthan, F. and Schlotterer, Markus and Krause, C. and Ho, T-M and Moussi-Soffys, A.}, title = {Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu}, series = {Nature astronomy}, volume = {3}, journal = {Nature astronomy}, number = {11}, publisher = {Nature Publishing Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-019-0832-x}, pages = {971 -- 976}, year = {2019}, abstract = {C-type asteroids are among the most pristine objects in the Solar System, but little is known about their interior structure and surface properties. Telescopic thermal infrared observations have so far been interpreted in terms of a regolith-covered surface with low thermal conductivity and particle sizes in the centimetre range. This includes observations of C-type asteroid (162173) Ryugu1,2,3. However, on arrival of the Hayabusa2 spacecraft at Ryugu, a regolith cover of sand- to pebble-sized particles was found to be absent4,5 (R.J. et al., manuscript in preparation). Rather, the surface is largely covered by cobbles and boulders, seemingly incompatible with the remote-sensing infrared observations. Here we report on in situ thermal infrared observations of a boulder on the C-type asteroid Ryugu. We found that the boulder's thermal inertia was much lower than anticipated based on laboratory measurements of meteorites, and that a surface covered by such low-conductivity boulders would be consistent with remote-sensing observations. Our results furthermore indicate high boulder porosities as well as a low tensile strength in the few hundred kilopascal range. The predicted low tensile strength confirms the suspected observational bias6 in our meteorite collections, as such asteroidal material would be too frail to survive atmospheric entry7}, language = {en} } @article{HansenDendaleConinxetal.2017, author = {Hansen, Dominique and Dendale, Paul and Coninx, Karin and Vanhees, Luc and Piepoli, Massimo F. and Niebauer, Josef and Cornelissen, Veronique and Pedretti, Roberto and Geurts, Eva and Ruiz, Gustavo R. and Corra, Ugo and Schmid, Jean-Paul and Greco, Eugenio and Davos, Constantinos H. and Edelmann, Frank and Abreu, Ana and Rauch, Bernhard and Ambrosetti, Marco and Braga, Simona S. and Barna, Olga and Beckers, Paul and Bussotti, Maurizio and Fagard, Robert and Faggiano, Pompilio and Garcia-Porrero, Esteban and Kouidi, Evangelia and Lamotte, Michel and Neunhaeuserer, Daniel and Reibis, Rona Katharina and Spruit, Martijn A. and Stettler, Christoph and Takken, Tim and Tonoli, Cajsa and Vigorito, Carlo and V{\"o}ller, Heinz and Doherty, Patrick}, title = {The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: A digital training and decision support system for optimized exercise prescription in cardiovascular disease. Concept, definitions and construction methodology}, series = {European journal of preventive cardiology : the official ESC journal for primary \& secondary cardiovascular prevention, rehabilitation and sports cardiology}, volume = {24}, journal = {European journal of preventive cardiology : the official ESC journal for primary \& secondary cardiovascular prevention, rehabilitation and sports cardiology}, publisher = {Sage Publ.}, address = {London}, issn = {2047-4873}, doi = {10.1177/2047487317702042}, pages = {1017 -- 1031}, year = {2017}, abstract = {Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.}, language = {en} }