@article{RodriguezMarekRathjeBommeretal.2014, author = {Rodriguez-Marek, A. and Rathje, E. M. and Bommer, Julian J. and Scherbaum, Frank and Stafford, P. J.}, title = {Application of single-station sigma and site-response characterization in a probabilistic Seismic-Hazard analysis for new uclear site}, series = {Bulletin of the Seismological Society of America}, volume = {104}, journal = {Bulletin of the Seismological Society of America}, number = {4}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120130196}, pages = {1601 -- 1619}, year = {2014}, abstract = {Aleatory variability in ground-motion prediction, represented by the standard deviation (sigma) of a ground-motion prediction equation, exerts a very strong influence on the results of probabilistic seismic-hazard analysis (PSHA). This is especially so at the low annual exceedance frequencies considered for nuclear facilities; in these cases, even small reductions in sigma can have a marked effect on the hazard estimates. Proper separation and quantification of aleatory variability and epistemic uncertainty can lead to defensible reductions in sigma. One such approach is the single-station sigma concept, which removes that part of sigma corresponding to repeatable site-specific effects. However, the site-to-site component must then be constrained by site-specific measurements or else modeled as epistemic uncertainty and incorporated into the modeling of site effects. The practical application of the single-station sigma concept, including the characterization of the dynamic properties of the site and the incorporation of site-response effects into the hazard calculations, is illustrated for a PSHA conducted at a rock site under consideration for the potential construction of a nuclear power plant.}, language = {en} }