@misc{CasselMuellerMoseretal.2019, author = {Cassel, Michael and M{\"u}ller, Juliane and Moser, Othmar and Strempler, Mares Elaine and Reso, Judith and Mayer, Frank}, title = {Orthopedic Injury Profiles in Adolescent Elite Athletes}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {559}, issn = {1866-8364}, doi = {10.25932/publishup-43495}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434953}, pages = {10}, year = {2019}, abstract = {Aim: The aim of the study was to identify common orthopedic sports injury profiles in adolescent elite athletes with respect to age, sex, and anthropometrics. Methods: A retrospective data analysis of 718 orthopedic presentations among 381 adolescent elite athletes from 16 different sports to a sports medical department was performed. Recorded data of history and clinical examination included area, cause and structure of acute and overuse injuries. Injury-events were analyzed in the whole cohort and stratified by age (11-14/15-17 years) and sex. Group differences were tested by chi-squared-tests. Logistic regression analysis was applied examining the influence of factors age, sex, and body mass index (BMI) on the outcome variables area and structure (a = 0.05). Results: Higher proportions of injury-events were reported for females (60\%) and athletes of the older age group (66\%) than males and younger athletes. The most frequently injured area was the lower extremity (47\%) followed by the spine (30.5\%) and the upper extremity (12.5\%). Acute injuries were mainly located at the lower extremity (74.5\%), while overuse injuries were predominantly observed at the lower extremity (41\%) as well as the spine (36.5\%). Joints (34\%), muscles (22\%), and tendons (21.5\%) were found to be the most often affected structures. The injured structures were different between the age groups (p = 0.022), with the older age group presenting three times more frequent with ligament pathology events (5.5\%/2\%) and less frequent with bony problems (11\%/20.5\%) than athletes of the younger age group. The injured area differed between the sexes (p = 0.005), with males having fewer spine injury-events (25.5\%/34\%) but more upper extremity injuries (18\%/9\%) than females. Regression analysis showed statistically significant influence for BMI (p = 0.002) and age (p = 0.015) on structure, whereas the area was significantly influenced by sex (p = 0.005). Conclusion: Events of soft-tissue overuse injuries are the most common reasons resulting in orthopedic presentations of adolescent elite athletes. Mostly, the lower extremity and the spine are affected, while sex and age characteristics on affected area and structure must be considered. Therefore, prevention strategies addressing the injury-event profiles should already be implemented in early adolescence taking age, sex as well as injury entity into account.}, language = {en} } @article{CasselMuellerMoseretal.2019, author = {Cassel, Michael and M{\"u}ller, Juliane and Moser, Othmar and Strempler, Mares Elaine and Reso, Judith and Mayer, Frank}, title = {Orthopedic Injury Profiles in Adolescent Elite Athletes}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.00544}, pages = {10}, year = {2019}, abstract = {Aim: The aim of the study was to identify common orthopedic sports injury profiles in adolescent elite athletes with respect to age, sex, and anthropometrics. Methods: A retrospective data analysis of 718 orthopedic presentations among 381 adolescent elite athletes from 16 different sports to a sports medical department was performed. Recorded data of history and clinical examination included area, cause and structure of acute and overuse injuries. Injury-events were analyzed in the whole cohort and stratified by age (11-14/15-17 years) and sex. Group differences were tested by chi-squared-tests. Logistic regression analysis was applied examining the influence of factors age, sex, and body mass index (BMI) on the outcome variables area and structure (a = 0.05). Results: Higher proportions of injury-events were reported for females (60\%) and athletes of the older age group (66\%) than males and younger athletes. The most frequently injured area was the lower extremity (47\%) followed by the spine (30.5\%) and the upper extremity (12.5\%). Acute injuries were mainly located at the lower extremity (74.5\%), while overuse injuries were predominantly observed at the lower extremity (41\%) as well as the spine (36.5\%). Joints (34\%), muscles (22\%), and tendons (21.5\%) were found to be the most often affected structures. The injured structures were different between the age groups (p = 0.022), with the older age group presenting three times more frequent with ligament pathology events (5.5\%/2\%) and less frequent with bony problems (11\%/20.5\%) than athletes of the younger age group. The injured area differed between the sexes (p = 0.005), with males having fewer spine injury-events (25.5\%/34\%) but more upper extremity injuries (18\%/9\%) than females. Regression analysis showed statistically significant influence for BMI (p = 0.002) and age (p = 0.015) on structure, whereas the area was significantly influenced by sex (p = 0.005). Conclusion: Events of soft-tissue overuse injuries are the most common reasons resulting in orthopedic presentations of adolescent elite athletes. Mostly, the lower extremity and the spine are affected, while sex and age characteristics on affected area and structure must be considered. Therefore, prevention strategies addressing the injury-event profiles should already be implemented in early adolescence taking age, sex as well as injury entity into account.}, language = {en} } @article{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and M{\"u}ller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and K{\"o}hler, Gerd and Hofmann, Peter}, title = {Effects of High-Intensity Interval Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0136489}, pages = {17}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @misc{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and Koehler, Gerd and Hofmann, Peter}, title = {Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {497}, issn = {1866-8364}, doi = {10.25932/publishup-40834}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408342}, pages = {17}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @article{MoserMaderTschakertetal.2016, author = {Moser, Othmar and Mader, Julia K. and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Koehler, Gerd and Messerschmidt, Janin and Hofmann, Peter}, title = {Accuracy of Continuous Glucose Monitoring (CGM) during Continuous and High-Intensity Interval Exercise in Patients with Type 1 Diabetes Mellitus}, series = {Nutrients}, volume = {8}, journal = {Nutrients}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu8080489}, pages = {15}, year = {2016}, abstract = {Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5\% below (L) and above (M) the first lactate turn point (LTP1), and 5\% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (-3.44, 5.15) mmol.L-1, -0.45 (-3.95, 3.05) mmol.L-1, -0.31 (-8.83, 8.20) mmol.L-1 and at 1.17 (-2.06, 4.40) mmol.L-1, 0.11 (-5.79, 6.01) mmol.L-1, 1.48 (-2.60, 5.57) mmol.L-1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise.}, language = {en} } @article{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and M{\"u}ller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and Koehler, Gerd and Hofmann, Peter}, title = {Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {8}, publisher = {Public Library of Science}, address = {Lawrence}, issn = {1932-6203}, doi = {10.1371/journal.pone.0136489}, pages = {17}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/ Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @misc{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and M{\"u}ller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and Koehler, Gerd and Hofmann, Peter}, title = {Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82479}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/ Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @article{TschakertKroepflMuelleretal.2015, author = {Tschakert, Gerhard and Kroepfl, Julia and Mueller, Alexander and Moser, Othmar and Groeschl, Werner and Hofmann, Peter}, title = {How to Regulate the Acute Physiological Response to "Aerobic" High-Intensity Interval Exercise}, series = {Journal of sports science \& medicine}, volume = {14}, journal = {Journal of sports science \& medicine}, number = {1}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, pages = {29 -- 36}, year = {2015}, abstract = {The acute physiological processes during "aerobic" high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 +/- 3.1 years; height: 1.80 +/- 0.04 m; weight: 76.7 +/- 6.4 kg; VO2max: 4.33 +/- 0.7 l.min(-1)) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (P-mean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (P-peak = power output at 95 \% of maximum heart rate), peak workload durations (t(peak)) of 4 min, and recovery durations (t(rec)) of 3 min, 2) short HIIE with P-peak according to the maximum power output (P-max) from IET, t(peak) of 20 s, and individually calculated t(rec) (26.7 +/- 13.4 s), and 3) CE with a target workload (P-target) equating to P-mean of HIIE. In short HIIE, mean lactate (La-mean) (5.22 +/- 1.41 mmol.l(-1)), peak La (7.14 +/- 2.48 mmol.l(-1)), and peak heart rate (HRpeak) (181.00 +/- 6.66 b.min(-1)) were significantly lower compared to long HIIE (La-mean: 9.83 +/- 2.78 mmol.l(-1); La-peak: 12.37 +/- 4.17 mmol.l(-1), HRpeak: 187.67 +/- 5.72 b.min(-1)). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during "aerobic" short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses.}, language = {en} } @misc{MoserMaderTschakertetal.2017, author = {Moser, Othmar and Mader, Julia K. and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Koehler, Gerd and Messerschmidt, Janin and Hofmann, Peter}, title = {Accuracy of Continuous Glucose Monitoring (CGM) during continuous and high-intensity interval exercise in patients with Type 1 Diabetes Mellitus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400470}, pages = {15}, year = {2017}, abstract = {Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5\% below (L) and above (M) the first lactate turn point (LTP1), and 5\% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (-3.44, 5.15) mmol·L-1, -0.45 (-3.95, 3.05) mmol·L-1, -0.31 (-8.83, 8.20) mmol·L-1 and at 1.17 (-2.06, 4.40) mmol·L-1, 0.11 (-5.79, 6.01) mmol·L-1, 1.48 (-2.60, 5.57) mmol·L-1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise.}, language = {en} } @misc{MoserMuellerTschakertetal.2017, author = {Moser, Othmar and Mueller, Alexander and Tschakert, Gerhard and Koehler, Gerd and Lawrence, Jimmy B. and Groeschl, Werner and Pieber, Thomas R. and Bracken, Richard M. and Hofmann, Peter}, title = {Exercise Prescription in Type 1 Diabetes: Should We Use Percentages of Maximum Heart Rate?}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {49}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/01.mss.0000519798.35679.cf}, pages = {1020 -- 1020}, year = {2017}, language = {en} }