@article{WeberHelwigBaueretal.2012, author = {Weber, Michael H. and Helwig, S. L. and Bauer, Klaus and Haberland, Christian and Koch, Olaf and Ryberg, T. and Maercklin, N. and Ritter, O. and Schulze, A.}, title = {Near-surface properties of an active fault derived by joint interpretation of different geophysical methods - the Arava/Araba Fault in the Middle East}, series = {Near surface geophysics}, volume = {10}, journal = {Near surface geophysics}, number = {5}, publisher = {European Association of Geoscientists \& Engineers}, address = {Houten}, issn = {1569-4445}, doi = {10.3997/1873-0604.2012031}, pages = {381 -- 390}, year = {2012}, abstract = {The motion of tectonic plates is accommodated at fault zones. One of the unanswered questions about fault zones relates to the role they play in controlling shallow and local hydrology. This study focuses on the Arava/Araba Fault (AF) zone, the southern portion of the Dead Sea Transform (DST) in the Middle East. We combine seismic and electromagnetic methods (EM) to image the geometry and map the petro-physical properties and water occurrence in the top 100 m of this active fault. For three profiles, P-velocity and resistivity images were derived independently. Using a neural network cluster analysis three classes with similar P-velocity and resistivities could then be determined from these images. These classes correspond to spatial domains of specific material and wetness. The first class occurs primarily east of the fault consisting of 'wet' sand (dunes) and brecciated sediments, whereas the second class composed of similar material located west of the fault is 'dry'. The third class lies at depth below ca. 50 m and is composed of highly deformed and weathered Precambrian rocks that constitute the multi-branch fault zone of the AF at this location. The combination of two independent measurements like seismics and EM linked by a stringent mathematical approach has thus shown the potential to delineate the interplay of lithology and water near active faults.}, language = {en} } @article{WeberAbuAyyashAbueladasetal.2009, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Alasonati-Taš{\´a}rov{\´a}, Zuzana and Al-Zubi, Hashim and Babeyko, Andrey and Bartov, Yuval and Bauer, Klaus and Becken, Michael and Bedrosian, Paul A. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bohnhoff, Marco and Bribach, Jens and Dulski, Peter and Ebbing, Joerg and El-Kelani, Radwan J. and Foerster, Andrea and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, Uri and Garfunkel, Zvi and G{\"o}tze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, Stefan L. and Hofstetter, Alfons and Hoffmann-Rothe, Arne and Jaeckel, Karl-Heinz and Janssen, Christoph and Jaser, Darweesh and Kesten, Dagmar and Khatib, Mohammed Ghiath and Kind, Rainer and Koch, Olaf and Koulakov, Ivan and Laske, Maria Gabi and Maercklin, Nils}, title = {Anatomy of the Dead Sea transform from lithospheric to microscopic scale}, issn = {8755-1209}, doi = {10.1029/2008rg000264}, year = {2009}, abstract = {Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere.}, language = {en} } @article{ChaabeneMarkovPrieskeetal.2022, author = {Chaabene, Helmi and Markov, Adrian and Prieske, Olaf and Moran, Jason and Behrens, Martin and Negra, Yassine and Ramirez-Campillo, Rodrigo and Koch, Ulrike and Mkaouer, Bessem}, title = {Effect of flywheel versus traditional resistance training on change of direction performance in male athletes}, series = {International journal of environmental research and public health : IJERPH}, volume = {19}, journal = {International journal of environmental research and public health : IJERPH}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {1661-7827}, doi = {10.3390/ijerph19127061}, pages = {17}, year = {2022}, abstract = {Objective: This study aimed to systematically review and meta-analyze the effect of flywheel resistance training (FRT) versus traditional resistance training (TRT) on change of direction (CoD) performance in male athletes. Methods: Five databases were screened up to December 2021. Results: Seven studies were included. The results indicated a significantly larger effect of FRT compared with TRT (standardized mean difference [SMD] = 0.64). A within-group comparison indicated a significant large effect of FRT on CoD performance (SMD = 1.63). For TRT, a significant moderate effect was observed (SMD = 0.62). FRT of <= 2 sessions/week resulted in a significant large effect (SMD = 1.33), whereas no significant effect was noted for >2 sessions/week. Additionally, a significant large effect of <= 12 FRT sessions (SMD = 1.83) was observed, with no effect of >12 sessions. Regarding TRT, no significant effects of any of the training factors were detected (p > 0.05). Conclusions: FRT appears to be more effective than TRT in improving CoD performance in male athletes. Independently computed single training factor analyses for FRT indicated that <= 2 sessions/week resulted in a larger effect on CoD performance than >2 sessions/week. Additionally, a total of <= 12 FRT sessions induced a larger effect than >12 training sessions. Practitioners in sports, in which accelerative and decelerative actions occur in quick succession to change direction, should regularly implement FRT.}, language = {en} }