@article{NishinoOkamotoLeimkuehler2017, author = {Nishino, Takeshi and Okamoto, Ken and Leimk{\"u}hler, Silke}, title = {Enzymes of the Xanthine Oxidase Family}, series = {Molybdenum and tungsten enzymes : biochemistry}, volume = {5}, journal = {Molybdenum and tungsten enzymes : biochemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {978-1-78262-391-5}, doi = {10.1039/9781782623915-00192}, pages = {192 -- 239}, year = {2017}, abstract = {Enzymes from the xanthine oxidase (XO) family of molybdenum enzymes are generally, with some exceptions, molybdenum iron-sulfur flavin hydroxylases. Mammalian xanthine oxidoreductase and aldehyde oxidase were among the first enzymes to be studied in detail more than 100 years ago and, surprisingly, they continue to be thoroughly studied in molecular detail with many open and unresolved questions remaining. Enzymes of the XO family are characterized by a molybdenum cofactor (Moco) active site with a MoVIOS(OH) ligand sphere where substrate hydroxylation of either aromatic or aliphatic carbon centers is catalyzed. During the reaction, electrons are transferred to the oxidizing substrate, most commonly O2 or NAD+, which react at the FAD site.}, language = {en} } @article{KikuchiFujisakiFurutaetal.2012, author = {Kikuchi, Hiroto and Fujisaki, Hiroshi and Furuta, Tadaomi and Okamoto, Ken and Leimk{\"u}hler, Silke and Nishino, Takeshi}, title = {Different inhibitory potency of febuxostat towards mammalian and bacterial xanthine oxidoreductases: insight from molecular dynamics}, series = {SCIENTIFIC REPORTS}, volume = {2}, journal = {SCIENTIFIC REPORTS}, publisher = {NATURE PUBLISHING GROUP}, address = {LONDON}, issn = {2045-2322}, doi = {10.1038/srep00331}, pages = {8}, year = {2012}, abstract = {Febuxostat, a drug recently approved in the US, European Union and Japan for treatment of gout, inhibits xanthine oxidoreductase (XOR)-mediated generation of uric acid during purine catabolism. It inhibits bovine milk XOR with a K-i in the picomolar-order, but we found that it is a much weaker inhibitor of Rhodobacter capsulatus XOR, even though the substrate-binding pockets of mammalian and bacterial XOR are well-conserved as regards to catalytically important residues and three-dimensional structure, and both permit the inhibitor to be accommodated in the active site, as indicated by computational docking studies. To clarify the reason for the difference of inhibitory potency towards the two XORs, we performed molecular dynamics simulations. The results indicate that differences in mobility of hydrophobic residues that do not directly interact with the substrate account for the difference in inhibitory potency.}, language = {en} }