@phdthesis{Nizardo2018, author = {Nizardo, Noverra Mardhatillah}, title = {Thermoresponsive block copolymers with UCST-behavior aimed at biomedical environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412217}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2018}, abstract = {Thermoresponsive block copolymers of presumably highly biocompatible character exhibiting upper critical solution temperature (UCST) type phase behavior were developed. In particular, these polymers were designed to exhibit UCST-type cloud points (Tcp) in physiological saline solution (9 g/L) within the physiologically interesting window of 30-50°C. Further, their use as carrier for controlled release purposes was explored. Polyzwitterion-based block copolymers were synthesized by atom transfer radical polymerization (ATRP) via a macroinitiator approach with varied molar masses and co-monomer contents. These block copolymers can self-assemble in the amphiphilic state to form micelles, when the thermoresponsive block experiences a coil-to-globule transition upon cooling. Poly(ethylene glycol) methyl ether (mPEG) was used as the permanently hydrophilic block to stabilize the colloids formed, and polyzwitterions as the thermoresponsive block to promote the temperature-triggered assembly-disassembly of the micellear aggregates at low temperature. Three zwitterionic monomers were used for this studies, namely 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyl- oxy)ethyl)dimethylammonio)butane-1-sulfonate (SBE), and 3-((2-(methacryloyloxy)ethyl)- dimethylammonio)propane-1-sulfate) (ZPE). Their (co)polymers were characterized with respect to their molecular structure by proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). Their phase behaviors in pure water as well as in physiological saline were studied by turbidimetry and dynamic light scattering (DLS). These (co)polymers are thermoresponsive with UCST-type phase behavior in aqueous solution. Their phase transition temperatures depend strongly on the molar masses and the incorporation of co-monomers: phase transition temperatures increased with increasing molar masses and content of poorly water-soluble co-monomer. In addition, the presence of salt influenced the phase transition dramatically. The phase transition temperature decreased with increasing salt content in the solution. While the PSPE homopolymers show a phase transition only in pure water, the PZPE homopolymers are able to exhibit a phase transition only in high salinity, as in physiological saline. Although both polyzwitterions have similar chemical structures that differ only in the anionic group (sulfonate group in SPE and sulfate group in ZPE), the water solubility is very different. Therefore, the phase transition temperatures of targeted block copolymers were modulated by using statistical copolymer of SPE and ZPE as thermoresponsive block, and varying the ratio of SPE to ZPE. Indeed, the statistical copolymers of P(SPE-co-ZPE) show phase transitions both in pure water as well as in physiological saline. Surprisingly, it was found that mPEG-b-PSBE block copolymer can display "schizophrenic" behavior in pure water, with the UCST-type cloud point occurring at lower temperature than the LCST-type one. The block copolymer, which satisfied best the boundary conditions, is block copolymer mPEG114-b-P(SPE43-co-ZPE39) with a cloud point of 45°C in physiological saline. Therefore, it was chosen for solubilization studies of several solvatochromic dyes as models of active agents, using the thermoresponsive block copolymer as "smart" carrier. The uptake and release of the dyes were explored by UV-Vis and fluorescence spectroscopy, following the shift of the wavelength of the absorbance or emission maxima at low and high temperature. These are representative for the loaded and released state, respectively. However, no UCST-transition triggered uptake and release of these dyes could be observed. Possibly, the poor affinity of the polybetaines to the dyes in aqueous environtments may be related to the widely reported antifouling properties of zwitterionic polymers.}, language = {en} } @article{VishnevetskayaHildebrandNizardoetal.2019, author = {Vishnevetskaya, Natalya S. and Hildebrand, Viet and Nizardo, Noverra Mardhatillah and Ko, Chia-Hsin and Di, Zhenyu and Radulescu, Aurel and Barnsley, Lester C. and M{\"u}ller-Buschbaum, Peter and Laschewsky, Andr{\´e} and Papadakis, Christine M.}, title = {All-in-One "Schizophrenic" self-assembly of orthogonally tuned thermoresponsive diblock copolymers}, series = {Langmuir}, volume = {35}, journal = {Langmuir}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.9b00241}, pages = {6441 -- 6452}, year = {2019}, abstract = {Smart, fully orthogonal switching was realized in a highly biocompatible diblock copolymer system with variable trigger-induced aqueous self-assembly. The polymers are composed of nonionic and zwitterionic blocks featuring lower and upper critical solution temperatures (LCSTs and UCSTs). In the system investigated, diblock copolymers from poly(N-isopropyl methacrylamide) (PNIPMAM) and a poly(sulfobetaine methacrylamide), systematic variation of the molar mass of the latter block allowed for shifting the UCST of the latter above the LCST of the PNIPMAM block in a salt-free condition. Thus, successive thermal switching results in "schizophrenic" micellization, in which the roles of the hydrophobic core block and the hydrophilic shell block are interchanged depending on the temperature. Furthermore, by virtue of the strong electrolyte-sensitivity of the zwitterionic polysulfobetaine block, we succeeded to shift its UCST below the LCST of the PNIPMAM block by adding small amounts of an electrolyte, thus inverting the pathway of switching. This superimposed orthogonal switching by electrolyte addition enabled us to control the switching scenarios between the two types of micelles (i) via an insoluble state, if the LCST-type cloud point is below the UCST-type cloud point, which is the case at low salt concentrations or (ii) via a molecularly dissolved state, if the LCST-type cloud point is above the UCST-type cloud point, which is the case at high salt concentrations. Systematic variation of the block lengths allowed for verifying the anticipated behavior and identifying the molecular architecture needed. The versatile and tunable self-assembly offers manifold opportunities, for example, for smart emulsifiers or for sophisticated carrier systems.}, language = {en} }