@misc{OttoMareljaSchoofsetal.2018, author = {Otto, Nils and Marelja, Zvonimir and Schoofs, Andreas and Kranenburg, Holger and Bittern, Jonas and Yildirim, Kerem and Berh, Dimitri and Bethke, Maria and Thomas, Silke and Rode, Sandra and Risse, Benjamin and Jiang, Xiaoyi and Pankratz, Michael and Leimk{\"u}hler, Silke and Kl{\"a}mbt, Christian}, title = {The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {975}, issn = {1866-8372}, doi = {10.25932/publishup-42620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426205}, pages = {14}, year = {2018}, abstract = {Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity.}, language = {en} } @misc{FondellEckertJayetal.2017, author = {Fondell, Mattis and Eckert, Sebastian and Jay, Raphael Martin and Weniger, Christian and Quevedo, Wilson and Niskanen, Johannes and Kennedy, Brian and Sorgenfrei, Nomi and Schick, Daniel and Giangrisostomi, Erika and Ovsyannikov, Ruslan and Adamczyk, Katrin and Huse, Nils and Wernet, Philippe and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {780}, issn = {1866-8372}, doi = {10.25932/publishup-43752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437529}, pages = {12}, year = {2017}, abstract = {We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology.}, language = {en} } @misc{KuehnSorgenfreiGiangrisostomietal.2018, author = {K{\"u}hn, Danilo and Sorgenfrei, Nomi and Giangrisostomi, Erika and Jay, Raphael Martin and Musazayb, Abdurrahman and Ovsyannikov, Ruslan and Str{\aa}hlman, Christian and Svensson, Svante and M{\aa}rtensson, Nils and F{\"o}hlisch, Alexander}, title = {Capabilities of angle resolved time of flight electron spectroscopy with the 60 degrees wide angle acceptance lens}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {782}, issn = {1866-8372}, doi = {10.25932/publishup-43662}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436629}, pages = {45 -- 50}, year = {2018}, abstract = {The simultaneous detection of energy, momentum and temporal information in electron spectroscopy is the key aspect to enhance the detection efficiency in order to broaden the range of scientific applications. Employing a novel 60 degrees wide angle acceptance lens system, based on an additional accelerating electron optical element, leads to a significant enhancement in transmission over the previously employed 30 degrees electron lenses. Due to the performance gain, optimized capabilities for time resolved electron spectroscopy and other high transmission applications with pulsed ionizing radiation have been obtained. The energy resolution and transmission have been determined experimentally utilizing BESSY II as a photon source. Four different and complementary lens modes have been characterized. (C) 2017 The Authors. Published by Elsevier B.V.}, language = {en} }