@article{NakamuraOnoSawadaetal.2017, author = {Nakamura, Yasunori and Ono, Masami and Sawada, Takayuki and Crofts, Naoko and Fujita, Naoko and Steup, Martin}, title = {Characterization of the functional interactions of plastidial starch phosphorylase and starch branching enzymes from rice endosperm during reserve starch biosynthesis}, series = {Plant science : an international journal of experimental plant biology}, volume = {264}, journal = {Plant science : an international journal of experimental plant biology}, publisher = {Elsevier}, address = {Clare}, issn = {0168-9452}, doi = {10.1016/j.plantsci.2017.09.002}, pages = {83 -- 95}, year = {2017}, abstract = {Functional interactions of plastidial phosphorylase (Phol) and starch branching enzymes (BEs) from the developing rice endosperm are the focus of this study. In the presence of both Phol and BE, the same branched primer molecule is elongated and further branched almost simultaneously even at very low glucan concentrations present in the purified enzyme preparations. By contrast, in the absence of any BE, glucans are not, to any significant extent, elongated by Phol. Based on our in vitro data, in the developing rice endosperm, Phol appears to be weakly associated with any of the BE isozymes. By using fluorophore-labeled malto-oligosaccharides, we identified maltose as the smallest possible primer for elongation by Phol. Linear dextrins act as carbohydrate substrates for BEs. By functionally interacting with a BE, Phol performs two essential functions during the initiation of starch biosynthesis in the rice endosperm: First, it elongates maltodextrins up to a degree of polymerization of at least 60. Second, by closely interacting with BEs, Phol is able to elongate branched glucans efficiently and thereby synthesizes branched carbohydrates essential for the initiation of amylopectin biosynthesis.}, language = {en} } @article{NakamuraSteupColleonietal.2022, author = {Nakamura, Yasunori and Steup, Martin and Colleoni, Christophe and Iglesias, Alberto A. and Bao, Jinsong and Fujita, Naoko and Tetlow, Ian}, title = {Molecular regulation of starch metabolism}, series = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, volume = {108}, journal = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, number = {4-5}, publisher = {Springer}, address = {Dordrecht}, issn = {0167-4412}, doi = {10.1007/s11103-022-01253-0}, pages = {289 -- 290}, year = {2022}, language = {en} } @article{BanksNishiyamaHasebeetal.2011, author = {Banks, Jo Ann and Nishiyama, Tomoaki and Hasebe, Mitsuyasu and Bowman, John L. and Gribskov, Michael and dePamphilis, Claude and Albert, Victor A. and Aono, Naoki and Aoyama, Tsuyoshi and Ambrose, Barbara A. and Ashton, Neil W. and Axtell, Michael J. and Barker, Elizabeth and Barker, Michael S. and Bennetzen, Jeffrey L. and Bonawitz, Nicholas D. and Chapple, Clint and Cheng, Chaoyang and Correa, Luiz Gustavo Guedes and Dacre, Michael and DeBarry, Jeremy and Dreyer, Ingo and Elias, Marek and Engstrom, Eric M. and Estelle, Mark and Feng, Liang and Finet, Cedric and Floyd, Sandra K. and Frommer, Wolf B. and Fujita, Tomomichi and Gramzow, Lydia and Gutensohn, Michael and Harholt, Jesper and Hattori, Mitsuru and Heyl, Alexander and Hirai, Tadayoshi and Hiwatashi, Yuji and Ishikawa, Masaki and Iwata, Mineko and Karol, Kenneth G. and Koehler, Barbara and Kolukisaoglu, Uener and Kubo, Minoru and Kurata, Tetsuya and Lalonde, Sylvie and Li, Kejie and Li, Ying and Litt, Amy and Lyons, Eric and Manning, Gerard and Maruyama, Takeshi and Michael, Todd P. and Mikami, Koji and Miyazaki, Saori and Morinaga, Shin-ichi and Murata, Takashi and M{\"u}ller-R{\"o}ber, Bernd and Nelson, David R. and Obara, Mari and Oguri, Yasuko and Olmstead, Richard G. and Onodera, Naoko and Petersen, Bent Larsen and Pils, Birgit and Prigge, Michael and Rensing, Stefan A. and Mauricio Riano-Pachon, Diego and Roberts, Alison W. and Sato, Yoshikatsu and Scheller, Henrik Vibe and Schulz, Burkhard and Schulz, Christian and Shakirov, Eugene V. and Shibagaki, Nakako and Shinohara, Naoki and Shippen, Dorothy E. and Sorensen, Iben and Sotooka, Ryo and Sugimoto, Nagisa and Sugita, Mamoru and Sumikawa, Naomi and Tanurdzic, Milos and Theissen, Guenter and Ulvskov, Peter and Wakazuki, Sachiko and Weng, Jing-Ke and Willats, William W. G. T. and Wipf, Daniel and Wolf, Paul G. and Yang, Lixing and Zimmer, Andreas D. and Zhu, Qihui and Mitros, Therese and Hellsten, Uffe and Loque, Dominique and Otillar, Robert and Salamov, Asaf and Schmutz, Jeremy and Shapiro, Harris and Lindquist, Erika and Lucas, Susan and Rokhsar, Daniel and Grigoriev, Igor V.}, title = {The selaginella genome identifies genetic changes associated with the evolution of vascular plants}, series = {Science}, volume = {332}, journal = {Science}, number = {6032}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1203810}, pages = {960 -- 963}, year = {2011}, abstract = {Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.}, language = {en} }