@article{KhalilRailaAlietal.2012, author = {Khalil, Mahmoud and Raila, Jens and Ali, Mostafa and Islam, Khan M. S. and Schenk, Regina and Krause, Jens-Peter and Schweigert, Florian J. and Rawel, Harshadrai Manilal}, title = {Stability and bioavailability of lutein ester supplements from Tagetes flower prepared under food processing conditions}, series = {Journal of functional food}, volume = {4}, journal = {Journal of functional food}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1756-4646}, doi = {10.1016/j.jff.2012.03.006}, pages = {602 -- 610}, year = {2012}, abstract = {Tagetes spp. belongs to the Asteraceae family. It is recognized as a major source of lutein ester (lutein esterified with fatty acids such as lauric, myristic and palmitic acids), a natural colorant belonging to the xanthophylls or oxygenated carotenoids. Four species of Tagetes flower (Tagetes tenuifolia, Tagetes erecta, Tagetes patula, and Tagetes lucida) were used to extract lutein and lutein esters with three different methods. The results showed that T. erecta, type "orangeprinz", is the richest source of lutein esters (14.4 +/- 0.234 mg/g) in comparison to other Tagetes spp. No significant differences between extractions of lutein esters with medium-chain triacylglycerols (MCT) oil, orange oil or solvent (hexane/isopropanol) could be observed. MCT oil also improved stability of lutein esters at 100 degrees C for 40 min. Emulsification of MCT oil improved the stability of lutein ester extract against UV light at 365 nm for 72 h. Finally, an emulsion was prepared under food processing conditions, spray dried and its bioavailability investigated in a preliminary human intervention study. The results show a lower resorption, but further data suggest improvements in implementation of such supplements. (c) 2012 Elsevier Ltd. All rights reserved.}, language = {en} }