@article{WirschingGrassmannEichelmannetal.2018, author = {Wirsching, Jan and Grassmann, Sophie and Eichelmann, Fabian and Harms, Laura Malin and Schenk, Matthew and Barth, Eva and Berndzen, Alide and Olalekan, Moses and Sarmini, Leen and Zuberer, Hedwig and Aleksandrova, Krasimira}, title = {Development and reliability assessment of a new quality appraisal tool for cross-sectional studies using biomarker data (BIOCROSS)}, series = {BMC Medical Research Methodology}, volume = {18}, journal = {BMC Medical Research Methodology}, publisher = {BMC}, address = {London}, issn = {1471-2288}, doi = {10.1186/s12874-018-0583-x}, pages = {8}, year = {2018}, abstract = {Background Biomarker-based analyses are commonly reported in observational epidemiological studies; however currently there are no specific study quality assessment tools to assist evaluation of conducted research. Accounting for study design and biomarker measurement would be important for deriving valid conclusions when conducting systematic data evaluation. Methods We developed a study quality assessment tool designed specifically to assess biomarker-based cross-sectional studies (BIOCROSS) and evaluated its inter-rater reliability. The tool includes 10-items covering 5 domains: 'Study rational', 'Design/Methods', 'Data analysis', 'Data interpretation' and 'Biomarker measurement', aiming to assess different quality features of biomarker cross-sectional studies. To evaluate the inter-rater reliability, 30 studies were distributed among 5 raters and intraclass correlation coefficients (ICC-s) were derived from respective ratings. Results The estimated overall ICC between the 5 raters was 0.57 (95\% Confidence Interval (CI): 0.38-0.74) indicating a good inter-rater reliability. The ICC-s ranged from 0.11 (95\% CI: 0.01-0.27) for the domain 'Study rational' to 0.56 (95\% CI: 0.40-0.72) for the domain 'Data interpretation'. Conclusion BIOCROSS is a new study quality assessment tool suitable for evaluation of reporting quality from cross-sectional epidemiological studies employing biomarker data. The tool proved to be reliable for use by biomedical scientists with diverse backgrounds and could facilitate comprehensive review of biomarker studies in human research.}, language = {en} } @article{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Biomolecules}, volume = {13}, journal = {Biomolecules}, edition = {1}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2218-273X}, doi = {10.3390/biom13010144}, pages = {1 -- 23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} } @misc{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1307}, issn = {1866-8372}, doi = {10.25932/publishup-57958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-579580}, pages = {23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} }