@article{MarkusMorozArnoldetal.2018, author = {Markus, Kathrin and Moroz, Lyuba and Arnold, Gabriele and Henckel, Daniela and Hiesinger, Harald and Rohrbach, Arno and Klemme, Stephan}, title = {Reflectance spectra of synthetic Fe-free ortho- and clinoenstatites in the UV/VIS/IR and implications for remote sensing detection of Fe-free pyroxenes on planetary surfaces}, series = {Planetary and space science}, volume = {159}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2018.04.006}, pages = {43 -- 55}, year = {2018}, abstract = {Both enstatite spectra are very bright in the VIS and NIR and show almost neutral to slightly bluish spectral slopes with a steep absorption in the UV. Very low iron in the enstatites (below similar to 0.04 wt\% FeO) already results in weak albeit noticeable absorptions in the VNIR between 0.4 and 0.9 mu m. Orthoenstatite and clinoenstatite are not distinguishable based only on their spectra in the VIS and NIR. At the Reststrahlen bands in the MIR a systematic difference in the number and exact position of local minima at similar to 10 mu m between clinoenstatite and orthoenstatite is evident. This can be used to discern between the polymorphs in this wavelength range. Additionally, we can distinguish between Fe-free low- and high-Ca pyroxenes in the MIR.}, language = {en} } @misc{FilacchioneGroussinHernyetal.2019, author = {Filacchione, Gianrico and Groussin, Olivier and Herny, Clemence and Kappel, David and Mottola, Stefano and Oklay, Nilda and Pommerol, Antoine and Wright, Ian and Yoldi, Zurine and Ciarniello, Mauro and Moroz, Lyuba and Raponi, Andrea}, title = {Comet 67P/CG Nucleus Composition and Comparison to Other Comets}, series = {Space science reviews}, volume = {215}, journal = {Space science reviews}, number = {19}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-019-0580-3}, pages = {46}, year = {2019}, abstract = {We review our current knowledge of comet 67P/Churyumov-Gerasimenko nucleus composition as inferred from measurements made by remote sensing and in-situ instruments aboard Rosetta orbiter and Philae lander. Spectrophotometric properties (albedos, color indexes and Hapke parameters) of 67P/CG derived by Rosetta are discussed in the context of other comets previously explored by space missions. Composed of an assemblage made of ices, organic materials and minerals, cometary nuclei exhibit very dark and red surfaces which can be described by means of spectrophotometric quantities and reproduced with laboratory measurements. The presence of surface water and carbon dioxide ices was found by Rosetta to occur at localized sites where the activity driven by solar input, gaseous condensation or exposure of pristine inner layers can maintain these species on the surface. Apart from these specific areas, 67P/CG's surface appears remarkably uniform in composition with a predominance of organic materials and minerals. The organic compounds contain abundant hydroxyl group and a refractory macromolecular material bearing aliphatic and aromatic hydrocarbons. The mineral components are compatible with a mixture of silicates and fine-grained opaques, including Fe-sulfides, like troilite and pyrrhotite, and ammoniated salts. In the vicinity of the perihelion several active phenomena, including the erosion of surface layers, the localized activity in cliffs, fractures and pits, the collapse of overhangs and walls, the transfer and redeposition of dust, cause the evolution of the different regions of the nucleus by inducing color, composition and texture changes.}, language = {en} }