@misc{HeidbachRajabiCuietal.2018, author = {Heidbach, Oliver and Rajabi, Mojtaba and Cui, Xiaofeng and Fuchs, Karl and Mueller, Birgit and Reinecker, John and Reiter, Karsten and Tingay, Mark and Wenzel, Friedemann and Xie, Furen and Ziegler, Moritz O. and Zoback, Mary-Lou and Zoback, Mark}, title = {The World Stress Map database release 2016}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {744}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2018.07.007}, pages = {484 -- 498}, year = {2018}, abstract = {Knowledge of the present-day crustal in-situ stress field is a key for the understanding of geodynamic processes such as global plate tectonics and earthquakes. It is also essential for the management of geo-reservoirs and underground storage sites for energy and waste. Since 1986, the World Stress Map (WSM) project has systematically compiled the orientation of maximum horizontal stress (S-Hmax). For the 30th anniversary of the project, the WSM database has been updated significantly with 42,870 data records which is double the amount of data in comparison to the database release in 2008. The update focuses on areas with previously sparse data coverage to resolve the stress pattern on different spatial scales. In this paper, we present details of the new WSM database release 2016 and an analysis of global and regional stress pattern. With the higher data density, we can now resolve stress pattern heterogeneities from plate-wide to local scales. In particular, we show two examples of 40 degrees-60 degrees S-Hmax rotations within 70 km. These rotations can be used as proxies to better understand the relative importance of plate boundary forces that control the long wave-length pattern in comparison to regional and local controls of the crustal stress state. In the new WSM project phase IV that started in 2017, we will continue to further refine the information on the S-Hmax orientation and the stress regime. However, we will also focus on the compilation of stress magnitude data as this information is essential for the calibration of geomechanical-numerical models. This enables us to derive a 3-D continuous description of the stress tensor from point-wise and incomplete stress tensor information provided with the WSM database. Such forward models are required for safety aspects of anthropogenic activities in the underground and for a better understanding of tectonic processes such as the earthquake cycle.}, language = {en} } @article{ReiterHeidbachSchmittetal.2014, author = {Reiter, Karsten and Heidbach, Oliver and Schmitt, Douglas and Haug, Kristine and Ziegler, Moritz O. and Moeck, Inga}, title = {A revised crustal stress orientation database for Canada}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {636}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2014.08.006}, pages = {111 -- 124}, year = {2014}, abstract = {The Canadian database on contemporary crustal stress has not been revised systematically in the past two decades. Here we present the results of our new compilation that contains 514 new data records for the orientation data of maximum compressive horizontal stress and 188 data records that were re-assessed. In total the Canadian stress database has now 1667 data records, which is an increase of about 45\%. From these data, a new Canadian Stress map as well as one for the Province of Alberta is presented. To analyse the stress pattern, we use the quasi median on the circle as a smoothing algorithm that generates a smoothed stress map of the maximum compressive horizontal stress orientation on a regular grid. The newly introduced quasi interquartile range on the circle estimates the spreading of the data and is used as a measure for the wave-length of the stress pattern. The result of the hybrid wavelength analysis confirms that long spatial wavelength stress patterns (>= 1000 km) exist in large areas in Canada. The observed stress pattern is transmitted through the intra-plate regions. The results reveal that shorter spatial wave length variation of the maximum compressive horizontal stress orientation of less than 200 km, prevails particularly in south-eastern and western Canada. Regional stress sources such as density contrasts, active fault systems, crustal structures, etc. might have a significant impact in these regions. In contrast to these variations, the observed stress pattern in the Alberta Basin is very homogeneous and mainly controlled by plate boundary forces and body forces. The influence of curvature of the Rocky Mountains salient in southern Alberta is minimal. The present-day horizontal stress orientations determined herein have important implications for the production of hydrocarbons and geothermal energy in the Alberta Basin. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{ZieglerHeidbachReineckeretal.2016, author = {Ziegler, Moritz O. and Heidbach, Oliver and Reinecker, John and Przybycin, Anna M. and Scheck-Wenderoth, Magdalena}, title = {A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {556}, issn = {1866-8372}, doi = {10.25932/publishup-40980}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409806}, pages = {18}, year = {2016}, abstract = {The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing S-Hmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases in model reliability can only be achieved using more high-quality data for calibration.}, language = {en} } @article{ZieglerHeidbachReineckeretal.2016, author = {Ziegler, Moritz O. and Heidbach, Oliver and Reinecker, John and Przybycin, Anna M. and Scheck-Wenderoth, Magdalena}, title = {A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin}, series = {Solid earth}, volume = {7}, journal = {Solid earth}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1869-9510}, doi = {10.5194/se-7-1365-2016}, pages = {1365 -- 1382}, year = {2016}, language = {en} } @article{RajabiZieglerTingayetal.2016, author = {Rajabi, Mojtaba and Ziegler, Moritz O. and Tingay, Mark and Heidbach, Oliver and Reynolds, Scott}, title = {Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand}, series = {Journal of geophysical research : Solid earth}, volume = {121}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2016JB013178}, pages = {6053 -- 6070}, year = {2016}, abstract = {The present-day stress state is a key parameter in numerous geoscientific research fields including geodynamics, seismic hazard assessment, and geomechanics of georeservoirs. The Taranaki Basin of New Zealand is located on the Australian Plate and forms the western boundary of tectonic deformation due to Pacific Plate subduction along the Hikurangi margin. This paper presents the first comprehensive wellbore-derived basin-scale in situ stress analysis in New Zealand. We analyze borehole image and oriented caliper data from 129 petroleum wells in the Taranaki Basin to interpret the shape of boreholes and determine the orientation of maximum horizontal stress (S-Hmax). We combine these data (151 S-Hmax data records) with 40 stress data records derived from individual earthquake focal mechanism solutions, 6 from stress inversions of focal mechanisms, and 1 data record using the average of several focal mechanism solutions. The resulting data set has 198 data records for the Taranaki Basin and suggests a regional S-Hmax orientation of N068 degrees E (22 degrees), which is in agreement with NW-SE extension suggested by geological data. Furthermore, this ENE-WSW average S-Hmax orientation is subparallel to the subduction trench and strike of the subducting slab (N50 degrees E) beneath the central western North Island. Hence, we suggest that the slab geometry and the associated forces due to slab rollback are the key control of crustal stress in the Taranaki Basin. In addition, we find stress perturbations with depth in the vicinity of faults in some of the studied wells, which highlight the impact of local stress sources on the present-day stress rotation.}, language = {en} } @article{ZieglerRajabiHeidbachetal.2016, author = {Ziegler, Moritz O. and Rajabi, Mojtaba and Heidbach, Oliver and Hersir, Gylfi Pall and Agustsson, Kristjan and Arnadottir, Sigurveig and Zang, Arno}, title = {The stress pattern of Iceland}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {674}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2016.02.008}, pages = {101 -- 113}, year = {2016}, abstract = {Iceland is located on the Mid-Atlantic Ridge which is the plate boundary between the Eurasian and the North American plates. It is one of the few places on earth where an active spreading centre is located onshore but the stress pattern has not been extensively investigated so far. In this paper we present a comprehensive compilation of the orientation of maximum horizontal stress (S-Hmax). In particular we interpret borehole breakouts and drilling induced fractures from borehole image logs in 57 geothermal wells onshore Iceland. The borehole results are combined with other stress indicators including earthquake focal mechanism solutions, geological information and overcoring measurements resulting in a dataset with 495 data records for the S-Hmax orientation. The reliability of each indicator is assessed according to the quality criteria of the World Stress Map project The majority of S-Hmax orientation data records in Iceland is derived from earthquake focal mechanism solutions (35\%) and geological fault slip inversions (26\%). 20\% of the data are borehole related stress indicators. In addition minor shares of S-Hmax orientations are compiled, amongst others, from focal mechanism inversions and the alignment of fissure eruptions. The results show that the S-Hmax orientations derived from different depths and stress indicators are consistent with each other. The resulting pattern of the present-day stress in Iceland has four distinct subsets of S-Hmax orientations. The S-Hmax orientation is parallel to the rift axes in the vicinity of the active spreading regions. It changes from NE-SW in the South to approximately N-S in central Iceland and NNW-SSE in the North. In the Westfjords which is located far away from the ridge the regional S-Hmax rotates and is parallel to the plate motion. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @phdthesis{Ziegler2017, author = {Ziegler, Moritz O.}, title = {The 3D in-situ stress field and its changes in geothermal reservoirs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403838}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 110, XV}, year = {2017}, abstract = {Information on the contemporary in-situ stress state of the earth's crust is essential for geotechnical applications and physics-based seismic hazard assessment. Yet, stress data records for a data point are incomplete and their availability is usually not dense enough to allow conclusive statements. This demands a thorough examination of the in-situ stress field which is achieved by 3D geomechanicalnumerical models. However, the models spatial resolution is limited and the resulting local stress state is subject to large uncertainties that confine the significance of the findings. In addition, temporal variations of the in-situ stress field are naturally or anthropogenically induced. In my thesis I address these challenges in three manuscripts that investigate (1) the current crustal stress field orientation, (2) the 3D geomechanical-numerical modelling of the in-situ stress state, and (3) the phenomenon of injection induced temporal stress tensor rotations. In the first manuscript I present the first comprehensive stress data compilation of Iceland with 495 data records. Therefore, I analysed image logs from 57 boreholes in Iceland for indicators of the orientation of the maximum horizontal stress component. The study is the first stress survey from different kinds of stress indicators in a geologically very young and tectonically active area of an onshore spreading ridge. It reveals a distinct stress field with a depth independent stress orientation even very close to the spreading centre. In the second manuscript I present a calibrated 3D geomechanical-numerical modelling approach of the in-situ stress state of the Bavarian Molasse Basin that investigates the regional (70x70x10km³) and local (10x10x10km³) stress state. To link these two models I develop a multi-stage modelling approach that provides a reliable and efficient method to derive from the larger scale model initial and boundary conditions for the smaller scale model. Furthermore, I quantify the uncertainties in the models results which are inherent to geomechanical-numerical modelling in general and the multi-stage approach in particular. I show that the significance of the models results is mainly reduced due to the uncertainties in the material properties and the low number of available stress magnitude data records for calibration. In the third manuscript I investigate the phenomenon of injection induced temporal stress tensor rotation and its controlling factors. I conduct a sensitivity study with a 3D generic thermo-hydro-mechanical model. I show that the key control factors for the stress tensor rotation are the permeability as the decisive factor, the injection rate, and the initial differential stress. In particular for enhanced geothermal systems with a low permeability large rotations of the stress tensor are indicated. According to these findings the estimation of the initial differential stress in a reservoir is possible provided the permeability is known and the angle of stress rotation is observed. I propose that the stress tensor rotations can be a key factor in terms of the potential for induced seismicity on pre-existing faults due to the reorientation of the stress field that changes the optimal orientation of faults.}, language = {en} } @article{ZieglerHeidbachZangetal.2017, author = {Ziegler, Moritz O. and Heidbach, Oliver and Zang, Arno and Martinez-Garzon, Patricia and Bohnhoff, Marco}, title = {Estimation of the differential stress from the stress rotation angle in low permeable rock}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073598}, pages = {6761 -- 6770}, year = {2017}, abstract = {Rotations of the principal stress axes are observed as a result of fluid injection into reservoirs. We use a generic, fully coupled 3-D thermo-hydro-mechanical model to investigate systematically the dependence of this stress rotation on different reservoir properties and injection scenarios. We find that permeability, injection rate, and initial differential stress are the key factors, while other reservoir properties only play a negligible role. In particular, we find that thermal effects do not significantly contribute to stress rotations. For reservoir types with usual differential stress and reservoir treatment the occurrence of significant stress rotations is limited to reservoirs with a permeability of less than approximately 10(-12)m(2). Higher permeability effectively prevents stress rotations to occur. Thus, according to these general findings, the observed principal stress axes rotation can be used as a proxy of the initial differential stress provided that rock permeability and fluid injection rate are known a priori.}, language = {en} } @article{ZieglerReiterHeidbachetal.2015, author = {Ziegler, Moritz O. and Reiter, Karsten and Heidbach, Oliver and Zang, Arno and Kwiatek, Grzegorz and Stromeyer, Dietrich and Dahm, Torsten and Dresen, Georg and Hofmann, Gerhard}, title = {Mining-Induced Stress Transfer and Its Relation to a 1.9 Seismic Event in an Ultra-deep South African Gold Mine}, series = {Pure and applied geophysics}, volume = {172}, journal = {Pure and applied geophysics}, number = {10}, publisher = {Springer}, address = {Basel}, issn = {0033-4553}, doi = {10.1007/s00024-015-1033-x}, pages = {2557 -- 2570}, year = {2015}, abstract = {On 27 December 2007, a 1.9 seismic event occurred within a dyke in the deep-level Mponeng Gold Mine, South Africa. From the seismological network of the mine and the one from the Japanese-German Underground Acoustic Emission Research in South Africa (JAGUARS) group, the hypocentral depth (3,509 m), focal mechanism and aftershock location were estimated. Since no mining activity took place in the days before the event, dynamic triggering due to blasting can be ruled out as the cause. To investigate the hypothesis that stress transfer, due to excavation of the gold reef, induced the event, we set up a small-scale high-resolution three-dimensional (3D) geomechanical numerical model. The model consisted of the four different rock units present in the mine: quartzite (footwall), hard lava (hanging wall), conglomerate (gold reef) and diorite (dykes). The numerical solution was computed using a finite-element method with a discretised mesh of approximately elements. The initial stress state of the model is in agreement with in situ data from a neighbouring mine, and the step-wise excavation was simulated by mass removal from the gold reef. The resulting 3D stress tensor and its changes due to mining were analysed based on the Coulomb failure stress changes on the fault plane of the event. The results show that the seismic event was induced regardless of how the Coulomb failure stress changes were calculated and of the uncertainties in the fault plane solution. We also used the model to assess the seismic hazard due to the excavation towards the dyke. The resulting curve of stress changes shows a significant increase in the last in front of the dyke, indicating that small changes in the mining progress towards the dyke have a substantial impact on the stress transfer.}, language = {en} }