@article{MeibomBarnesCoveyetal.2013, author = {Meibom, S. and Barnes, Sydney A. and Covey, K. and Jeffries, R. D. and Matt, S. and Morin, J. and Palacios, A. and Reiners, A. and Sicilia-Aguilar, A. and Irwin, J.}, title = {Angular momentum evolution of cool stars: Toward a synthesis of observations and theory before and after the ZAMS}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {334}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1-2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201211777}, pages = {168 -- 171}, year = {2013}, abstract = {The coexistence of fast and slowly rotating cool stars in ZAMS clusters - forming distinct sequences in the color vs. rotation period plane - is providing clues to differences in their pre main-sequence angular momentum evolution. This Cool Stars 17 splinter was dedicated to a discussion of new observational and theoretical results that may help discriminate between proposed mechanisms for early angular momentum regulation and help us explain the observed ZAMS dichotomy.}, language = {en} } @misc{DormannSchymanskiCabraletal.2012, author = {Dormann, Carsten F. and Schymanski, Stanislaus J. and Cabral, Juliano Sarmento and Chuine, Isabelle and Graham, Catherine and Hartig, Florian and Kearney, Michael and Morin, Xavier and R{\"o}mermann, Christine and Schr{\"o}der-Esselbach, Boris and Singer, Alexander}, title = {Correlation and process in species distribution models: bridging a dichotomy}, series = {Journal of biogeography}, volume = {39}, journal = {Journal of biogeography}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/j.1365-2699.2011.02659.x}, pages = {2119 -- 2131}, year = {2012}, abstract = {Within the field of species distribution modelling an apparent dichotomy exists between process-based and correlative approaches, where the processes are explicit in the former and implicit in the latter. However, these intuitive distinctions can become blurred when comparing species distribution modelling approaches in more detail. In this review article, we contrast the extremes of the correlativeprocess spectrum of species distribution models with respect to core assumptions, model building and selection strategies, validation, uncertainties, common errors and the questions they are most suited to answer. The extremes of such approaches differ clearly in many aspects, such as model building approaches, parameter estimation strategies and transferability. However, they also share strengths and weaknesses. We show that claims of one approach being intrinsically superior to the other are misguided and that they ignore the processcorrelation continuum as well as the domains of questions that each approach is addressing. Nonetheless, the application of process-based approaches to species distribution modelling lags far behind more correlative (process-implicit) methods and more research is required to explore their potential benefits. Critical issues for the employment of species distribution modelling approaches are given, together with a guideline for appropriate usage. We close with challenges for future development of process-explicit species distribution models and how they may complement current approaches to study species distributions.}, language = {en} }