@article{JeltschTewsBroseetal.2004, author = {Jeltsch, Florian and Tews, J{\"o}rg and Brose, Ulrich and Grimm, Volker and Tielb{\"o}rger, Katja and Wichmann, Matthias and Schwager, Monika}, title = {Animal species diversity driven by habitat heterogeneity/diversity : the importance of keystone structures}, year = {2004}, abstract = {In a selected literature survey we reviewed studies on the habitat heterogeneity-animal species diversity relationship and evaluated whether there are uncertainties and biases in its empirical support. We reviewed 85 publications for the period 1960-2003. We screened each publication for terms that were used to define habitat heterogeneity, the animal species group and ecosystem studied, the definition of the structural variable, the measurement of vegetation structure and the temporal and spatial scale of the study. The majority of studies found a positive correlation between habitat heterogeneity/diversity and animal species diversity. However, empirical support for this relationship is drastically biased towards studies of vertebrates and habitats under anthropogenic influence. In this paper we show that ecological effects of habitat heterogeneity may vary considerably between species groups depending on whether structural attributes are perceived as heterogeneity or fragmentation. Possible effects may also vary relative to the structural variable measured. Based upon this, we introduce a classification framework that may be used for across-studies comparisons. Moreover, the effect of habitat heterogeneity for one species group may differ in relation to the spatial scale. In several studies, however, different species groups are closely linked to 'keystone structures' that determine animal species diversity by their presence. Detecting crucial keystone structures of the vegetation has profound implications for nature conservation and biodiversity management.}, language = {en} } @article{BlaumSeymourRossmanithetal.2009, author = {Blaum, Niels and Seymour, Colleen and Rossmanith, Eva and Schwager, Monika and Jeltsch, Florian}, title = {Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands : identifcation of suitable indicators}, issn = {0960-3115}, doi = {10.1007/s10531-008-9498-x}, year = {2009}, abstract = {Shrub encroachment linked to heavy grazing has dramatically changed savanna landscapes, and is a major form of rangeland degradation. Our understanding of how shrub encroachment affects arthropod communities is poor, however. Here, we investigate the effects of shrub encroachment on abundance and diversity of ground-dwelling (wingless) arthropods at varying levels of shrub cover in the southern Kalahari. We also ascertain if invertebrate assemblage composition changes with habitat structure and identify which aspects of habitat structure (e.g., grass cover, herbaceous plant cover, shrub density) correlate most strongly with these changes. Ant, scorpion and dung beetle abundance increased with shrub cover, whereas grasshoppers and solifuges declined. Spider and beetle abundance exhibited hump-shaped relationships with shrub cover. RTU richness within orders either mirrored abundances, or exhibited no trend. Shrub density was the habitat component most correlated with similarities between invertebrate assemblages. Ground-dwelling arthropods showed clear shifts in species assemblage composition at a similarity level of 65\% according to shrub density. Changes in indicator species showed that within the Tenebrionidae (darkling beetles), certain species respond positively to shrub thickening, replacing other species within the Family. Small-bodied, wingless Scarabaeidae (dung beetles) tended to increase with increased shrub density and three species emerged as significant indicators of more thickened habitats, although this might be a response to greater dung availability, rather than habitat structure itself. We conclude that because ground- dwelling invertebrates showed such clear responses in species assemblage composition, they present excellent candidates for use as indicator species in further studies into bush encroachment.}, language = {en} } @phdthesis{Schwager2005, author = {Schwager, Monika}, title = {Climate change, variable colony sizes and temporal autocorrelation : consequences of living in changing environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5744}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Natural and human induced environmental changes affect populations at different time scales. If they occur in a spatial heterogeneous way, they cause spatial variation in abundance. In this thesis I addressed three topics, all related to the question, how environmental changes influence population dynamics. In the first part, I analysed the effect of positive temporal autocorrelation in environmental noise on the extinction risk of a population, using a simple population model. The effect of autocorrelation depended on the magnitude of the effect of single catastrophic events of bad environmental conditions on a population. If a population was threatened by extinction only, when bad conditions occurred repeatedly, positive autocorrelation increased extinction risk. If a population could become extinct, even if bad conditions occurred only once, positive autocorrelation decreased extinction risk. These opposing effects could be explained by two features of an autocorrelated time series. On the one hand, positive autocorrelation increased the probability of series of bad environmental conditions, implying a negative effect on populations. On the other hand, aggregation of bad years also implied longer periods with relatively good conditions. Therefore, for a given time period, the overall probability of occurrence of at least one extremely bad year was reduced in autocorrelated noise. This can imply a positive effect on populations. The results could solve a contradiction in the literature, where opposing effects of autocorrelated noise were found in very similar population models. In the second part, I compared two approaches, which are commonly used for predicting effects of climate change on future abundance and distribution of species: a "space for time approach", where predictions are based on the geographic pattern of current abundance in relation to climate, and a "population modelling approach" which is based on correlations between demographic parameters and the inter-annual variation of climate. In this case study, I compared the two approaches for predicting the effect of a shift in mean precipitation on a population of the sociable weaver Philetairus socius, a common colonially living passerine bird of semiarid savannahs of southern Africa. In the space for time approach, I compared abundance and population structure of the sociable weaver in two areas with highly different mean annual precipitation. The analysis showed no difference between the two populations. This result, as well as the wide distribution range of the species, would lead to the prediction of no sensitive response of the species to a slight shift in mean precipitation. In contrast, the population modelling approach, based on a correlation between reproductive success and rainfall, predicted a sensitive response in most model types. The inconsistency of predictions was confirmed in a cross-validation between the two approaches. I concluded that the inconsistency was caused, because the two approaches reflect different time scales. On a short time scale, the population may respond sensitively to rainfall. However, on a long time scale, or in a regional comparison, the response may be compensated or buffered by a variety of mechanisms. These may include behavioural or life history adaptations, shifts in the interactions with other species, or differences in the physical environment. The study implies that understanding, how such mechanisms work, and at what time scale they would follow climate change, is a crucial precondition for predicting ecological consequences of climate change. In the third part of the thesis, I tested why colony sizes of the sociable weaver are highly variable. The high variation of colony sizes is surprising, as in studies on coloniality it is often assumed that an optimal colony size exists, in which individual bird fitness is maximized. Following this assumption, the pattern of bird dispersal should keep colony sizes near an optimum. However, I showed by analysing data on reproductive success and survival that for the sociable weaver fitness in relation to colony size did not follow an optimum curve. Instead, positive and negative effects of living in large colonies overlaid each other in a way that fitness was generally close to one, and density dependence was low. I showed in a population model, which included an evolutionary optimisation process of dispersal that this specific shape of the fitness function could lead to a dispersal strategy, where the variation of colony sizes was maintained.}, subject = {Populationsbiologie}, language = {en} } @article{BlaumSchwagerWichmannetal.2012, author = {Blaum, Niels and Schwager, Monika and Wichmann, Matthias C. and Rossmanith, Eva}, title = {Climate induced changes in matrix suitability explain gene flow in a fragmented landscape - the effect of interannual rainfall variability}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {35}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2011.07154.x}, pages = {650 -- 660}, year = {2012}, abstract = {In fragmented landscapes, the survival of species and the maintenance of populations with healthy genetic structures will largely depend on movement/dispersal of organisms across matrix areas. In this article, we highlight that effects of fragmentation and climate change occur simultaneously and may enhance or mitigate each other. We systematically analyzed the effect of increasing interannual variation in rainfall on the genetic structure of two neighbouring small mammal subpopulations in a fragmented savanna landscape. The effect of interannual rainfall variation is analyzed for two contrasting scenarios that differ in mean annual rainfall and are both close to a dispersal threshold. Scenario 1 (low mean annual rainfall) lies slightly below this threshold and scenario 2 (high mean annual rainfall) slightly above, i.e. the amount of rainfall in an average rainfall year prevents dispersal in scenario 1, but promotes gene flow in scenario 2. We show that the temporal dynamics of the matrix was crucial for gene flow and the genetic structure of the neighbouring small mammal subpopulations. The most important result is that the increase in rainfall variability could both increase and decrease the genetic difference between the subpopulations in a complex pattern, depending on the scenario and on the amount of variation in rainfall. Finally, we discuss that the relevance of the matrix as temporarily suitable habitat may become a key aspect for biodiversity conservation. We conclude to incorporate temporal changes in matrix suitability in metapopulation theory since local extinctions, gene flow and re-colonization are likely to be affected in fragmented landscapes with such dynamic matrix areas.}, language = {en} } @misc{BlaumMosnerSchwageretal.2011, author = {Blaum, Niels and Mosner, Eva and Schwager, Monika and Jeltsch, Florian}, title = {How functional is functional?Ecological groupings in terrestrial animal ecology - towards an animal functional type approach}, series = {Biodiversity and conservation}, volume = {20}, journal = {Biodiversity and conservation}, number = {11}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3115}, doi = {10.1007/s10531-011-9995-1}, pages = {2333 -- 2345}, year = {2011}, abstract = {Understanding mechanisms to predict changes in plant and animal communities is a key challenge in ecology. The need to transfer knowledge gained from single species to a more generalized approach has led to the development of categorization systems where species' similarities in life strategies and traits are classified into ecological groups (EGs) like functional groups/types or guilds. While approaches in plant ecology undergo a steady improvement and refinement of methodologies, progression in animal ecology is lagging behind. With this review, we aim to initiate a further development of functional classification systems in animal ecology, comparable to recent developments in plant ecology. We here (i) give an overview of terms and definitions of EGs in animal ecology, (ii) discuss existing classification systems, methods and application areas of EGs (focusing on terrestrial vertebrates), and (iii) provide a "roadmap towards an animal functional type approach" for improving the application of EGs and classifications in animal ecology. We found that an animal functional type approach requires: (i) the identification of core traits describing species' dependency on their habitat and life history traits, (ii) an optimization of trait selection by clustering traits into hierarchies, (iii) the assessment of "soft traits" as substitute for hardly measurable traits, e.g. body size for dispersal ability, and (iv) testing of delineated groups for validation including experiments.}, language = {en} } @article{GrimmRevillaGroeneveldetal.2005, author = {Grimm, Volker and Revilla, Eloy and Groeneveld, J{\"u}rgen and Kramer-Schadt, Stephanie and Schwager, Monika and Tews, J{\"o}rg and Wichmann, Matthias and Jeltsch, Florian}, title = {Importance of buffer mechanisms for population viability analysis}, year = {2005}, language = {en} } @article{SchwagerCovasBlaumetal.2008, author = {Schwager, Monika and Covas, Rita and Blaum, Niels and Jeltsch, Florian}, title = {Limitations of population models in predicting climate change effects : a simulation study of sociable weavers in southern Africa}, issn = {0030-1299}, doi = {10.1111/j.0030-1299.2008.16464.x}, year = {2008}, language = {en} } @inproceedings{RossmanithBlaumKeiletal.2006, author = {Rossmanith, Eva and Blaum, Niels and Keil, Manfred and Langerwisch, F. and Meyer, Jork and Popp, Alexander and Schmidt, Michael and Schultz, Christoph and Schwager, Monika and Vogel, Melanie and Wasiolka, Bernd and Jeltsch, Florian}, title = {Scaling up local population dynamics to regional scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7320}, year = {2006}, abstract = {In semi-arid savannas, unsustainable land use can lead to degradation of entire landscapes, e.g. in the form of shrub encroachment. This leads to habitat loss and is assumed to reduce species diversity. In BIOTA phase 1, we investigated the effects of land use on population dynamics on farm scale. In phase 2 we scale up to consider the whole regional landscape consisting of a diverse mosaic of farms with different historic and present land use intensities. This mosaic creates a heterogeneous, dynamic pattern of structural diversity at a large spatial scale. Understanding how the region-wide dynamic land use pattern affects the abundance of animal and plant species requires the integration of processes on large as well as on small spatial scales. In our multidisciplinary approach, we integrate information from remote sensing, genetic and ecological field studies as well as small scale process models in a dynamic region-wide simulation tool.
Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006.}, language = {en} } @article{JeltschMoloneySchurretal.2008, author = {Jeltsch, Florian and Moloney, Kirk A. and Schurr, Frank Martin and K{\"o}chy, Martin and Schwager, Monika}, title = {The state of plant population modelling in light of environmental change}, issn = {1433-8319}, doi = {10.1016/j.ppees.2007.11.004}, year = {2008}, abstract = {Plant population modelling has been around since the 1970s, providing a valuable approach to understanding plant ecology from a mechanistic standpoint. It is surprising then that this area of research has not grown in prominence with respect to other approaches employed in modelling plant systems. In this review, we provide an analysis of the development and role of modelling in the field of plant population biology through an exploration of where it has been, where it is now and, in our opinion, where it should be headed. We focus, in particular, on the role plant population modelling could play in ecological forecasting, an urgent need given current rates of regional and global environmental change. We suggest that a critical element limiting the current application of plant population modelling in environmental research is the trade-off between the necessary resolution and detail required to accurately characterize ecological dynamics pitted against the goal of generality, particularly at broad spatial scales. In addition to suggestions how to overcome the current shortcoming of data on the process-level we discuss two emerging strategies that may offer a way to overcome the described limitation: (1) application of a modern approach to spatial scaling from local processes to broader levels of interaction and (2) plant functional-type modelling. Finally we outline what we believe to be needed in developing these approaches towards a 'science of forecasting'.}, language = {en} }