@article{TangSullivanHongetal.2019, author = {Tang, Alan T. and Sullivan, Katie Rose and Hong, Courtney C. and Goddard, Lauren M. and Mahadevan, Aparna and Ren, Aileen and Pardo, Heidy and Peiper, Amy and Griffin, Erin and Tanes, Ceylan and Mattei, Lisa M. and Yang, Jisheng and Li, Li and Mericko-Ishizuka, Patricia and Shen, Le and Hobson, Nicholas and Girard, Romuald and Lightle, Rhonda and Moore, Thomas and Shenkar, Robert and Polster, Sean P. and Roedel, Claudia Jasmin and Li, Ning and Zhu, Qin and Whitehead, Kevin J. and Zheng, Xiangjian and Akers, Amy and Morrison, Leslie and Kim, Helen and Bittinger, Kyle and Lengner, Christopher J. and Schwaninger, Markus and Velcich, Anna and Augenlicht, Leonard and Abdelilah-Seyfried, Salim and Min, Wang and Marchuk, Douglas A. and Awad, Issam A. and Kahn, Mark L.}, title = {Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation}, series = {Science Translational Medicine}, volume = {11}, journal = {Science Translational Medicine}, number = {520}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {1946-6234}, doi = {10.1126/scitranslmed.aaw3521}, pages = {14}, year = {2019}, abstract = {Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in KRIT1, CCM2, or PDCD10. Disease onset is earlier and more severe in individuals with PDCD10 mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with PDCD10 mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of Pdcd10, but not Krit1, in gut epithelial cells. Loss of gut epithelial Pdcd10 results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of Pdcd10 in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling.}, language = {en} } @article{LuZengChenetal.2013, author = {Lu, Yong-Ping and Zeng, De-Ying and Chen, You-Peng and Liang, Xu-Jing and Xu, Jie-Ping and Huang, Si-Min and Lai, Zhi-Wei and Wen, Wang-Rong and von Websky, Karoline and Hocher, Berthold}, title = {Low birth weight is associated with lower respiratory tract infections in children with hand, foot, and mouth disease}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {59}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9-10}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2012.120725}, pages = {985 -- 992}, year = {2013}, abstract = {Background: Low birth weight (LBW) might be a risk factor for acquiring lower respiratory tract infections (LRTIs) associated with disease related complications in early childhood. HFMD, a frequent viral infection in southern China, is a leading cause of lower respiratory tract infections in children. We analyzed whether LBW is a risk factor for children with HFMD to develop lower respiratory tract infections. Methods: A total of 298 children with HFMD, admitted to a hospital in Qingyuan city, Guangdong province, were recruited. Demographic data and clinical parameters such as serum glucose level and inflammatory markers including peripheral white blood cell count, serum C-reactive protein, and erythrocyte sedimentation rate were routinely collected on admission. Birth weight data were derived from birth records. Results: Mean birth weight (BW) was 167 g lower in patients with HFMD and LRTIs as compared to patients with solely HFMD (p = 0.022) and the frequency of birth weight below the tenth percentile was significantly higher in patients with HFMD and LRTIs (p = 0.002). Conclusions: The results of the study show that low birth weight is associated with a higher incidence of lower respiratory tract infections in young children with HFMD.}, language = {en} } @article{LiWangChenetal.2012, author = {Li, Jian and Wang, Zi-Neng and Chen, You-Peng and Dong, Yun-Peng and Shuai, Han-Lin and Xiao, Xiao-Min and Reichetzeder, Christoph and Hocher, Berthold}, title = {Late gestational maternal serum cortisol is inversely associated with fetal brain growth}, series = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, volume = {36}, journal = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, number = {3}, publisher = {Elsevier}, address = {Oxford}, issn = {0149-7634}, doi = {10.1016/j.neubiorev.2011.12.006}, pages = {1085 -- 1092}, year = {2012}, abstract = {To analyze the association between fetal brain growth and late gestational blood serum cortisol in normal pregnancy.Blood total cortisol was quantified at delivery in 432 Chinese mother/child pairs. Key inclusion criteria of the cohort were: no structural anomalies of the newborn, singleton pregnancy, no alcohol abuse, no drug abuse or history of smoking no hypertensive disorders and no impairment of glucose tolerance and no use of steroid medication during pregnancy. Differential ultrasound examination of the fetal body was done in early (gestational day 89.95 +/- 7.31), middle (gestational day 160.17 16.12) and late pregnancy (gestational day 268.89 +/- 12.42). Newborn's cortisol was not correlated with any of the ultrasound measurements during pregnancy nor with birth weight. Multivariable regression analysis, considering timing of the ultrasound examination, the child's sex, maternal BMI, maternal age, maternal body weight at delivery, the timing of cortisol measurement and maternal uterine contraction states, revealed that maternal serum total cortisol was significantly negative correlated with ultrasound parameters describing the fetal brain: late biparietal diameter (R-2 =0.512, p =0.009), late head circumference (R-2 = 0.498, p= 0.001), middle biparietal diameter (R-2= 0.819, p = 0.013), middle cerebellum transverse diameter R-2 = 0.76, p= 0.014) and early biparietal diameter(R-2 = 0.819, p = 0.013). The same analysis revealed that birth weight as well as ultrasound parameters such as abdominal circumference and femur length were not correlated to maternal cortisol levels. In conclusion, our study demonstrates that maternal cortisol secretion within physiological ranges may be inversely correlated to fetal brain growth but not to birth weight. It remains to be demonstrated whether maternal cortisol secretion negatively influencing fetal brain growth translates to adverse neurological outcomes in later life.}, language = {en} } @article{ChenXiaoLietal.2012, author = {Chen, You-Peng and Xiao, Xiao-Min and Li, Jian and Reichetzeder, Christoph and Wang, Zi-Neng and Hocher, Berthold}, title = {Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0036329}, pages = {9}, year = {2012}, abstract = {Background: Environmental alternations leading to fetal programming of cardiovascular diseases in later life have been attributed to maternal factors. However, animal studies showed that paternal obesity may program cardio-metabolic diseases in the offspring. In the current study we tested the hypothesis that paternal BMI may be associated with fetal growth. Methods and Results: We analyzed the relationship between paternal body mass index (BMI) and birth weight, ultrasound parameters describing the newborn's body shape as well as parameters describing the newborns endocrine system such as cortisol, aldosterone, renin activity and fetal glycated serum protein in a birth cohort of 899 father/mother/child triplets. Since fetal programming is an offspring sex specific process, male and female offspring were analyzed separately. Multivariable regression analyses considering maternal BMI, paternal and maternal age, hypertension during pregnancy, maternal total glycated serum protein, parity and either gestational age (for birth weight) or time of ultrasound investigation (for ultrasound parameters) as confounding showed that paternal BMI is associated with growth of the male but not female offspring. Paternal BMI correlated with birth parameters of male offspring only: birth weight; biparietal diameter, head circumference; abdominal diameter, abdominal circumference; and pectoral diameter. Cortisol was likewise significantly correlated with paternal BMI in male newborns only. Conclusions: Paternal BMI affects growth of the male but not female offspring. Paternal BMI may thus represent a risk factor for cardiovascular diseases of male offspring in later life. It remains to be demonstrated whether this is linked to an offspring sex specific paternal programming of cortisol secretion.}, language = {en} } @article{LiWangChenetal.2012, author = {Li, Jian and Wang, Zi-Neng and Chen, You-Peng and Dong, Yun-Peng and Mao, Xiao-Min and Hocher, Berthold}, title = {Association of fetal but not maternal P-glycoprotein C3435T polymorphism with fetal growth and birth weight, a possible risk factor for cardiovascular diseases in later life}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {58}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9-10}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2012.110920}, pages = {1085 -- 1089}, year = {2012}, abstract = {Background: The multidrug transporter P-glycoprotein (PGP) is expressed in the human placenta. In particular the C3435T ABCB1 polymorphism was associated with altered tissue expression of PGP in the human placenta. However, the potential functional impact of this polymorphism on the offspring is unknown so far. Methods: We analyzed the impact of the ABCB1/C3435T polymorphism on fetal growth in 262 mother/child pairs. Fetal growth was assessed by differential ultrasound examination of the fetal body prior to birth and by measuring birth weight. Results: The maternal ABCB1/C3435T polymorphism showed no trend for an association with birth weight or any ultrasound parameter describing late gestational fetal body shape. Genotyping the newborns, however, demonstrated that newborns carrying two copies of the T allele had a birth weight of 3176.39 g, whereas CT and CC newborns had a birth weight of 3345.04 g (p = 0.022). Adjusting for gestational age at delivery, child's gender, maternal BM1, maternal age and body weight at delivery confirmed this finding (p = 0.009). Considering gestational day of late ultrasound examination, gestational age at delivery, child's gender, maternal BMI, maternal age and maternal body weight at delivery, the fetal ABCB1/C3435T genotype revealed likewise a significant negative correlation with abdominal diameter and abdominal circumference (R-2 = 0.538, p = 0.010 and R-2 = 0.534, p = 0.005, respectively). Conclusions: Low birth weight may be a risk factor for cardiovascular diseases in later life. The fetal ABCB1/C3435T gene polymorphism may contribute to this risk. Since PGP controls transport of various biological agents, we suggest that PGP is involved in the transport of biological agents to the fetus that are important for normal fetal growth.}, language = {en} } @article{ChenLiWangetal.2012, author = {Chen, You-Peng and Li, Jian and Wang, Zi-Neng and Reichetzeder, Christoph and Xu, Hao and Gong, Jian and Chen, Guang-Ji and Pfab, Thiemo and Xiao, Xiao-Min and Hocher, Berthold}, title = {Renin angiotensin aldosterone system and glycemia in pregnancy}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {58}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {5-6}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, pages = {527 -- 533}, year = {2012}, abstract = {Background: The renin-angiotensin-aldosterone system (RAAS) is involved in the pathogenesis of insulin resistance and type 2 diabetes in the general population. The RAAS is activated during pregnancy. However, it is unknown whether the RAAS contributes to glycemia in pregnant women. Methods: Plasma renin activity (PRA) and plasma aldosterone levels were quantified at delivery in 689 Chinese mothers. An oral glucose tolerance test in fasted women was performed in the second trimester of pregnancy. The diagnosis of gestational diabetes mellitus (GDM) and impaired glucose tolerance during pregnancy were made according to the guidelines of the Chinese Society of Obstetrics. Results: Plasma aldosterone was significantly higher in pregnant women with GDM as compared to those without impairment of glycemic control (normal pregnancies: 0.27 +/- 0.21 ng/mL, GDM: 0.36 +/- 0.30 ng/mL; p<0.05). Regression analyses revealed that PRA was negatively correlated with fasting blood glucose (FBG) (R-2 = 0.03, p = 0.007), whereas plasma aldosterone and aldosterone/PRA ratio were positively correlated with FBG (R-2 = 0.05, p<0.001 and R-2 = 0.03, p = 0.007, respectively). Multivariable regression analysis models considering relevant confounding factors confirmed these findings. Conclusions: This study demonstrated that fasting blood glucose in pregnant women is inversely correlated with the PRA, whereas plasma aldosterone showed a highly significant positive correlation with fasting blood glucose during pregnancy. Moreover, plasma aldosterone is significantly higher in pregnant women with GDM as compared to those women with normal glucose tolerance during pregnancy. Although causality cannot be proven in association studies, these data may indicate that the RAAS during pregnancy contributes to the pathogenesis of insulin resistance/new onset of diabetes during pregnancy.}, language = {en} } @article{GaoWangLinetal.2014, author = {Gao, Guan-Nan and Wang, Min and Lin, Jun and Wu, Ning and Tan, Cheng-Ming and Kliem, Bernhard and Su, Yang}, title = {Radio observations of the fine structure inside a post-CME current sheet}, series = {Research in astronomy and astrophysics : a publication of the Chinese Astronomical Society and National Astronomical Observatories, Chinese Academy of Sciences}, volume = {14}, journal = {Research in astronomy and astrophysics : a publication of the Chinese Astronomical Society and National Astronomical Observatories, Chinese Academy of Sciences}, number = {7}, publisher = {Chinese Astronomical Society and National Astronomical Observatories, Chinese Academy of Sciences}, address = {Beijing}, issn = {1674-4527}, doi = {10.1088/1674-4527/14/7/006}, pages = {843 -- 854}, year = {2014}, abstract = {A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on 2004 December 1. The data exhibited various patterns of plasma motions, suggestive of the interaction between sunward moving plasmoids and the flare loop system during the impulsive phase of the event. In addition to the radio data, the associated white-light, H alpha, extreme ultraviolet light, and soft and hard X-rays were also studied.}, language = {en} } @article{LiWangSchlemmetal.2011, author = {Li, Jian and Wang, Zi-Neng and Schlemm, Ludwig and Pfab, Thiemo and Xiao, Xiao-Min and Chen, You-Peng and Hocher, Berthold}, title = {Low birth weight and elevated head-to-abdominal circumference ratio are associated with elevated fetal glycated serum protein concentrations}, series = {Journal of hypertension}, volume = {29}, journal = {Journal of hypertension}, number = {9}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0b013e328349a2e6}, pages = {1712 -- 1718}, year = {2011}, abstract = {Objective To analyze the association between low birth weight, head-to-abdominal circumference ratio, and insulin resistance in early life. Method and results Glycated serum proteins (GSPs) were quantified at delivery in 612 Chinese mother/child pairs serving as a surrogate of maternal and fetal glycemia. Differential ultrasound examination of the fetal's body (head circumference, biparietal diameter, pectoral diameter, abdominal circumference, and femur length) was done in average 1 week prior to delivery. Multivariable regression analysis considering gestational age at delivery, the child's sex, maternal BMI, maternal age at delivery, maternal body weight, and pregnancyinduced hypertension revealed that fetal GSP was inversely associated with birth weight (R(2) = 0.416; P < 0.001). Fetal GSP was furthermore positively associated with the head-to-abdominal circumference ratio, whereas the maternal GSP was negatively correlated with the offspring's head-to-abdominal circumference ratio (R(2) = 0.285; P = 0.010 and R(2) = 0.261; P = 0.020, respectively). The increased head-to-abdominal circumference ratio in newborns with higher fetal GSP is mainly due to a reduced abdominal circumference rather than reduced growth of the brain. Conclusion The disproportional intrauterine growth is in line with the concept of so-called brain sparing, a mechanism maintaining the intrauterine growth of the brain at the expense of trunk growth. Our data suggest that the low birth weight phenotype, linked to cardiovascular diseases like hypertension in later life, might be a phenotype of disproportional intrauterine growth retardation and early life insulin resistance.}, language = {en} } @article{ChenLuLietal.2014, author = {Chen, You-Peng and Lu, Yong-Ping and Li, Jian and Liu, Zhi-Wei and Chen, Wen-Jing and Liang, Xu-Jing and Chen, Xin and Wen, Wang-Rong and Xiao, Xiao-Min and Reichetzeder, Christoph and Hocher, Berthold}, title = {Fetal and maternal angiotensin (1-7) are associated with preterm birth}, series = {Journal of hypertension}, volume = {32}, journal = {Journal of hypertension}, number = {9}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0000000000000251}, pages = {1833 -- 1841}, year = {2014}, abstract = {Background: Recent studies show that preterm birth is associated with hypertension in later life. The renin-angiotensin system (RAS) during pregnancy influences fetal growth and development. In the current study, we investigated the impact of fetal as well as maternal angiotensin (1-7) [Ang (1-7)] and angiotensin II (Ang II) plasma concentrations on the risk of preterm birth. Methods: Three hundred and nine pregnant women were prospectively included into the study. The pregnant women were divided into two groups, for example, preterm birth of lower than 37 gestational weeks (n = 17) and full-term birth of 37 gestational weeks or more (n = 292). Maternal and neonatal plasma Ang (1-7) and Ang II concentrations were analyzed at birth from maternal venous blood and umbilical cord blood, respectively. Risk factors for premature birth were determined by multiple logistic regression analysis. Results: Fetal and maternal plasma Ang (1-7) concentrations in the preterm group were lower than those of the term group fetal Ang (1-7) preterm birth: 486.15 +/- 337.34 ng/l and fetal Ang (1-7) term birth: 833.84 +/- 698.12 ng/l and maternal Ang (1-7) preterm birth: 399.86 +/- 218.93 ng/l; maternal Ang (1-7) term birth: 710.34 +/- 598.22 ng/l. Multiple logistic regression analysis considering confounding factors revealed that preeclampsia (P < 0.001), premature rupture of membranes (P = 0.001), lower concentration of maternal Ang (1-7) (P = 0.013) and fetal plasma Ang (1-7) (P = 0.032) were independently associated with preterm birth. We could furthermore demonstrate that the maternal Ang (1-7)/Ang II ratio is independently associated with gestational hypertension or preeclampsia, factors causing preterm birth. Conclusions: Lower concentrations of maternal and fetal Ang (1-7) are independently associated with preterm birth - a risk factor of hypertension in later life.}, language = {en} }