@article{AriasAndresKettnerMikietal.2018, author = {Arias Andr{\´e}s, Mar{\´i}a de Jes{\´u}s and Kettner, Marie Therese and Miki, Takeshi and Grossart, Hans-Peter}, title = {Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {635}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.04.199}, pages = {1152 -- 1159}, year = {2018}, abstract = {Heterotrophic microbes with the capability to process considerable amounts of organic matter can colonize microplastic particles (MP) in aquatic ecosystems. Weather colonization of microorganisms on MP will alter ecological niche and functioning of microbial communities remains still unanswered. Therefore, we compared the functional diversity of biofilms on microplastics when incubated in three lakes in northeastern Germany differing in trophy and limnological features. For all lakes, we compared heterotrophic activities of MP biofilms with those of microorganisms in the surrounding water by using Biolog (R) EcoPlates and assessed their oxygen consumption in microcosm assays with and without MP. The present study found that the total biofilm biomass was higher in the oligo-mesotrophic and dystrophic lakes than in the eutrophic lake. In all lakes, functional diversity profiles of MP biofilms consistently differed from those in the surrounding water. However, solely in the oligo-mesotrophic lake MP biofilms had a higher functional richness compared to the ambient water. These results demonstrate that the functionality and hence the ecological role of MP-associated microbial communities are context-dependent, i.e. different environments lead to substantial changes in biomass build up and heterotrophic activities of MP biofilms. We propose that MP surfaces act as new niches for aquatic microorganisms and that the constantly increasing MP pollution has the potential to globally impact carbon dynamics of pelagic environments by altering heterotrophic activities. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @misc{FrenkenAlacidBergeretal.2017, author = {Frenken, Thijs and Alacid, Elisabet and Berger, Stella A. and Bourne, Elizabeth Charlotte and Gerphagnon, Melanie and Großart, Hans-Peter and Gsell, Alena S. and Ibelings, Bas W. and Kagami, Maiko and Kupper, Frithjof C. and Letcher, Peter M. and Loyau, Adeline and Miki, Takeshi and Nejstgaard, Jens C. and Rasconi, Serena and Rene, Albert and Rohrlack, Thomas and Rojas-Jimenez, Keilor and Schmeller, Dirk S. and Scholz, Bettina and Seto, Kensuke and Sime-Ngando, Telesphore and Sukenik, Assaf and Van de Waal, Dedmer B. and Van den Wyngaert, Silke and Van Donk, Ellen and Wolinska, Justyna and Wurzbacher, Christian and Agha, Ramsy}, title = {Integrating chytrid fungal parasites into plankton ecology: research gaps and needs}, series = {Environmental microbiology}, volume = {19}, journal = {Environmental microbiology}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.13827}, pages = {3802 -- 3822}, year = {2017}, abstract = {Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology.}, language = {en} }