@article{BastianNacakRoddatisetal.2020, author = {Bastian, Philipp U. and Nacak, Selma and Roddatis, Vladimir and Kumke, Michael Uwe}, title = {Tracking the motion of lanthanide ions within core-shell-shell NaYF4 nanocrystals via resonance energy transfer}, series = {The journal of physical chemistry : C}, volume = {124}, journal = {The journal of physical chemistry : C}, number = {20}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.0c02588}, pages = {11229 -- 11238}, year = {2020}, abstract = {Lanthanide resonance energy transfer (LRET) was used to investigate the motion of dopant ions during the synthesis of core-shell-shell-nanocrystals (NCs) that are frequently used as frequency upconversion materials. Reaction conditions (temperature, solvent) as well as lattice composition and precursors were adapted from a typical hydrothermal synthesis approach used to obtain upconversion nanoparticles (UCNPs). Instead of adding the lanthanide ions Yb3+/Er3+ as the sensitizer/activator couple, Eu3+/Nd3+ as the donor/acceptor were added as the LRET pair to the outer shell (Eu-3) and the core (Nd-3). By tailoring the thickness of the insulation shell ("middle shell"), the expected distance between the donor and the acceptor was increased beyond 2 R-0, a distance for which no LRET is expected. The successful synthesis of core- shell-shell NCs with different thicknesses of the insulation layer was demonstrated by high-resolution transmission electron microscopy measurement. The incorporation of the Eu3+ ions into the NaYF4 lattice was investigated by high-resolution time-resolved luminescence measurements. Two major Eu3+ species (bulk and surface) were found. This was supported by steady-state as well as time-resolved luminescence data. Based on the luminescence decay kinetics, the intermixing of lanthanides during synthesis of core- shell UCNPs was evaluated. The energy transfer between Eu3+ (donor) and Nd3+ (acceptor) ions was exploited to quantify the motion of the dopant ions. This investigation reveals the migration of Ln(3+) ions between different compatiments in core-shell NCs and affects the concept of using core-shell architectures to increase the efficiency of UCNPs. In order to obtain well-separated core and shell structures with different dopants, alternative concepts are needed.}, language = {en} } @article{EisoldSellrieSchenketal.2015, author = {Eisold, Ursula and Sellrie, Frank and Schenk, J{\"o}rg A. and Lenz, Christine and St{\"o}cklein, Walter F. M. and Kumke, Michael Uwe}, title = {Bright or dark immune complexes of anti-TAMRA antibodies for adapted fluorescence-based bioanalysis}, series = {Analytical \& bioanalytical chemistry}, volume = {407}, journal = {Analytical \& bioanalytical chemistry}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-015-8538-0}, pages = {3313 -- 3323}, year = {2015}, abstract = {Fluorescence labels, for example fluorescein or rhodamin derivatives, are widely used in bioanalysis applications including lateral-flow assays, PCR, and fluorescence microscopy. Depending on the layout of the particular application, fluorescence quenching or enhancement may be desired as the detection principle. Especially for multiplexed applications or high-brightness requirements, a tunable fluorescence probe can be beneficial. The alterations in the photophysics of rhodamine derivatives upon binding to two different anti-TAMRA antibodies were investigated by absorption and fluorescence-spectroscopy techniques, especially determining the fluorescence decay time and steady-state and time-resolved fluorescence anisotropy. Two monoclonal anti-TAMRA antibodies were generated by the hybridoma technique. Although surface-plasmon-resonance measurements clearly proved the high affinity of both antibodies towards 5-TAMRA, the observed effects on the fluorescence of rhodamine derivatives were very different. Depending on the anti-TAMRA antibody either a strong fluorescence quenching (G71-DC7) or a distinct fluorescence enhancement (G71-BE11) upon formation of the immune complex was observed. Additional rhodamine derivatives were used to gain further information on the binding interaction. The data reveal that such haptens as 5-TAMRA could generate different paratopes with equal binding affinities but different binding interactions, which provide the opportunity to adapt bioanalysis methods including immunoassays for optimized detection principles for the same hapten depending on the specific requirements.}, language = {en} } @article{HoangMertensWessigetal.2018, author = {Hoang, Hoa T. and Mertens, Monique and Wessig, Pablo and Sellrie, Frank and Schenk, J{\"o}rg A. and Kumke, Michael Uwe}, title = {Antibody Binding at the Liposome-Water Interface}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.8b03016}, pages = {18109 -- 18116}, year = {2018}, abstract = {Different signal amplification strategies to improve the detection sensitivity of immunoassays have been applied which utilize enzymatic reactions, nanomaterials, or liposomes. The latter are very attractive materials for signal amplification because liposomes can be loaded with a large amount of signaling molecules, leading to a high sensitivity. In addition, liposomes can be used as a cell-like "bioscaffold" to directly test recognition schemes aiming at cell-related processes. This study demonstrates an easy and fast approach to link the novel hydrophobic optical probe based on [1,3]dioxolo[4,5-f]-[1,3]benzodioxole (DBD dye mm239) with tunable optical properties to hydrophilic recognition elements (e.g., antibodies) using liposomes for signal amplification and as carrier of the hydrophobic dye. The fluorescence properties of mm239 (e.g., long fluorescence lifetime, large Stokes shift, high photostability, and high quantum yield), its high hydrophobicity for efficient anchoring in liposomes, and a maleimide bioreactive group were applied in a unique combination to build a concept for the coupling of antibodies or other protein markers to liposomes (coupling to membranes can be envisaged). The concept further allowed us to avoid multiple dye labeling of the antibody. Here, anti-TAMRA-antibody (DC7-Ab) was attached to the liposomes. In proof-of-concept, steady-state as well as time-resolved fluorescence measurements (e.g., fluorescence depolarization) in combination with single molecule detection (fluorescence correlation spectroscopy, FCS) were used to analyze the binding interaction between DC7-Ab and liposomes as well as the binding of the antigen rhodamine 6G (R6G) to the antibody. Here, the Forster resonance energy transfer (FRET) between mm239 and R6G was monitored. In addition to ensemble FRET data, single-molecule FRET (PIE-FRET) experiments using pulsed interleaved excitation were used to characterize in detail the binding on a single-molecule level to avoid averaging out effects.}, language = {en} } @article{EisoldSellrieMemczaketal.2018, author = {Eisold, Ursula and Sellrie, Frank and Memczak, Henry and Andersson, Anika and Schenk, J{\"o}rg A. and Kumke, Michael Uwe}, title = {Dye tool box for a fluorescence enhancement immunoassay}, series = {Bioconjugate chemistry}, volume = {29}, journal = {Bioconjugate chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1043-1802}, doi = {10.1021/acs.bioconjchem.7b00731}, pages = {203 -- 214}, year = {2018}, abstract = {Immunochemical analytical methods are very successful in clinical diagnostics and are nowadays also emerging in the control of food as well as monitoring of environmental issues. Among the different immunoassays, luminescence based formats are characterized by their outstanding sensitivity making this format especially attractive for future applications. The need for multiparameter detection capabilities calls for a tool box of dye labels in order to transduce the biochemical reaction into an optically detectable signal. Here, in a multiparameter approach each analyte may be detected by a different dye with a unique emission color (covering the blue to red spectral range) or a unique luminescence decay kinetics. In the case of a competitive immunoassay format for each of the different dye labels an individual antibody would be needed. In the present paper a slightly modified approach is presented using a 7-aminocoumarin unit as the basic antigen against which highly specific antibodies were generated. Leaving the epitope region in the dyes unchanged but introducing a side group in positon 3 of the coumarin system allowed us to tune the optical properties of the coumarin dyes without the necessity of new antibody generation. Upon modification of the parent coumarin unit the full spectral range from blue to deep red was accessed. In the manuscript the photophysical characterization of the coumarin derivatives and their corresponding immunocomplexes with two highly specific antibodies is presented. The coumarin dyes and their immunocomplexes were characterized by steady-state and time-resolved absorption as well as emission spectroscopy. Moreover, fluorescence depolarization measurements were carried out to complement the data stressing the different binding modes of the two antibodies. The binding modes were evaluated using the photophysics of 7-aminocoumarins and how it was affected in the respective immunocomplexes, namely, the formation of the intramolecular charge transfer (ICT) as well as the twisted intramolecular charge transfer (TICT). In contrast to other antibody-dye pairs reported a distinct fluorescence enhancement upon formation of the antibody-dye complex up to a factor of SO was found. Because of the easy emission color tuning by tailoring the coumarin substitution for the antigen binding in nonrelevant position 3 of the parent molecule, a dye tool box is on hand which can be used in the construction of competitive multiparameter fluorescence enhancement immunoassays (FenIA).}, language = {en} } @article{SchimkaKlierdeGuerenuetal.2019, author = {Schimka, Selina and Klier, Dennis Tobias and de Guerenu, Anna Lopez and Bastian, Philipp and Lomadze, Nino and Kumke, Michael Uwe and Santer, Svetlana}, title = {Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator}, series = {Journal of physics : Condensed matter}, volume = {31}, journal = {Journal of physics : Condensed matter}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-8984}, doi = {10.1088/1361-648X/aafcfa}, pages = {9}, year = {2019}, abstract = {Here we report on photo-isomerization of azobenzene containing surfactants induced during irradiation with near-infrared (NIR) light in the presence of upconversion nanoparticles (UCNPs) acting as mediator. The surfactant molecule consists of charged head group and hydrophobic tail with azobenzene group incorporated in alkyl chain. The azobenzene group can be reversible photo-isomerized between two states: trans- and cis- by irradiation with light of an appropriate wavelength. The trans-cis photo-isomerization is induced by UV light, while cis-trans isomerization proceeds either thermally in darkness, or can be accelerated by exposure to illumination with a longer wavelength typically in a blue/green range. We present the application of lanthanide doped UCNPs to successfully switch azobenzene containing surfactants from cis to trans conformation in bulk solution using NIR light. Using Tm-3(+) or Er-3(+) as activator ions, the UCNPs provide emissions in the spectral range of 450 nm < lambda(em) < 480 nm (for Tm-3(+), three and four photon induced emission) or 525 nm < lambda(em) < 545 nm (for Er-3(+), two photon induced emission), respectively. Especially for UCNPs containing Tm-3(+) a good overlap of the emissions with the absorption bands of the azobenzene is present. Under illumination of the surfactant solution with NIR light (lambda(ex) = 976 nm) in the presence of the Tm-3(+)-doped UCNPs, the relaxation time of cis-trans photo-isomerization was increased by almost 13 times compared to thermally induced isomerization. The influence of thermal heating due to the irradiation using NIR light was shown to be minor for solvents not absorbing in NIR spectral range (e.g. CHCl3) in contrast to water, which shows a distinct absorption in the NIR.}, language = {en} } @article{HaubitzDrobotTsushimaetal.2021, author = {Haubitz, Toni and Drobot, Bj{\"o}rn and Tsushima, Satoru and Steudtner, Robin and Stumpf, Thorsten and Kumke, Michael Uwe}, title = {Quenching mechanism of uranyl(VI) by chloride and bromide in aqueous and non-aqueous solutions}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {125}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.1c02487}, pages = {4380 -- 4389}, year = {2021}, abstract = {A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X-2(center dot-) and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile.}, language = {en} } @article{YinSchubertStilleretal.2008, author = {Yin, Chunhong and Schubert, Marcel and Stiller, Burkhard and Castellani, Mauro and Neher, Dieter and Kumke, Michael Uwe and H{\"o}rhold, Hans-Heinrich}, title = {Tuning of the excited-state properties and photovoltaic performance in PPV-based polymer blends}, doi = {10.1021/Jp803977k}, year = {2008}, language = {en} } @article{KietzkeNeherKumkeetal.2004, author = {Kietzke, Thomas and Neher, Dieter and Kumke, Michael Uwe and Montenegro, Rivelino V. D. and Landfester, Katharina and Scherf, Ullrich}, title = {A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices}, year = {2004}, abstract = {Polymer solar cell devices with nanostructured blend layers have been fabricated using single- and dual- component polymer nanospheres. Starting from an electron-donating and an electron-accepting polyfluorene derivative, PFB and F8BT, dissolved in suitable organic solvents, dispersions of solid particles with mean diameters of ca. 50 nm, containing either the pure polymer components or a mixture of PFB and F8BT in each particle, were prepared with the miniemulsion process. Photovoltaic devices based on these particles have been studied with respect to the correlation between external quantum efficiency and layer composition. It is shown that the properties of devices containing a blend of single-component PFB and F8BT particles differ significantly from those of solar cells based on blend particles, even for the same layer composition. Various factors determining the quantum efficiency in both kinds of devices are identified and discussed, taking into account the spectroscopic properties of the particles. An external quantum efficiency of ca. 4\% is measured for a device made from polymer blend nanoparticles containing PFB:F8BT at a weight ratio of 1:2 in each individual nanosphere. This is among the highest values reported so far for photovoltaic cells using this material combination}, language = {en} }