@article{HesseKlierSgarzietal.2018, author = {Hesse, Julia and Klier, Dennis Tobias and Sgarzi, Massimo and Nsubuga, Anne and Bauer, Christoph and Grenzer, Joerg and H{\"u}bner, Rene and Wislicenus, Marcus and Joshi, Tanmaya and Kumke, Michael Uwe and Stephan, Holger}, title = {Rapid Synthesis of Sub-10nm Hexagonal NaYF4-Based Upconverting Nanoparticles using Therminol((R))66}, series = {ChemistryOpen : including thesis treasury}, volume = {7}, journal = {ChemistryOpen : including thesis treasury}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.201700186}, pages = {159 -- 168}, year = {2018}, abstract = {We report a simple one-pot method for the rapid preparation of sub-10nm pure hexagonal (-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol((R))66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCNPs. The upconversion (UC) luminescence properties of the nanocrystals were tuned by varying the concentrations of the dopants (Nd3+ and Yb3+ sensitizer ions and Er3+ activator ions). The size and phase-purity of the as-synthesized core and core-shell nanocrystals were assessed by using complementary transmission electron microscopy, dynamic light scattering, X-ray diffraction, and small-angle X-ray scattering studies. In-depth photophysical evaluation of the UCNPs was pursued by using steady-state and time-resolved luminescence spectroscopy. An enhancement in the UC intensity was observed if the nanocrystals, doped with optimized concentrations of lanthanide sensitizer/activator ions, were further coated with an inert/active shell. This was attributed to the suppression of surface-related luminescence quenching effects.}, language = {en} } @misc{HesseKlierSgarzietal.2018, author = {Hesse, Julia and Klier, Dennis Tobias and Sgarzi, Massimo and Nsubuga, Anne and Bauer, Christoph and Grenzer, J{\"o}rg and H{\"u}bner, Ren{\´e} and Wislicenus, Marcus and Joshi, Tanmaya and Kumke, Michael Uwe and Stephan, Holger}, title = {Rapid synthesis of sub-10 nm hexagonal NaYF4-based upconverting nanoparticles using Therminol® 66}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {613}, issn = {1866-8372}, doi = {10.25932/publishup-42351}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423515}, pages = {10}, year = {2018}, abstract = {We report a simple one-pot method for the rapid preparation of sub-10nm pure hexagonal (-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol((R))66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCNPs. The upconversion (UC) luminescence properties of the nanocrystals were tuned by varying the concentrations of the dopants (Nd3+ and Yb3+ sensitizer ions and Er3+ activator ions). The size and phase-purity of the as-synthesized core and core-shell nanocrystals were assessed by using complementary transmission electron microscopy, dynamic light scattering, X-ray diffraction, and small-angle X-ray scattering studies. In-depth photophysical evaluation of the UCNPs was pursued by using steady-state and time-resolved luminescence spectroscopy. An enhancement in the UC intensity was observed if the nanocrystals, doped with optimized concentrations of lanthanide sensitizer/activator ions, were further coated with an inert/active shell. This was attributed to the suppression of surface-related luminescence quenching effects.}, language = {en} } @phdthesis{Kumke2005, author = {Kumke, Michael Uwe}, title = {Huminstoffe und organische Modellliganden und ihre Wechselwirkung mit Metallionen und polyzyklischen aromatischen Kohlenwasserstoffen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6066}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Immobilisierung bzw. Mobilisierung und Transport von Schadstoffen in der Umwelt, besonders in den Kompartimenten Boden und Wasser, sind von fundamentaler Bedeutung f{\"u}r unser ({\"U}ber)Leben auf der Erde. Einer der Hauptreaktionspartner f{\"u}r organische und anorganische Schadstoffe (Xenobiotika) in der Umwelt sind Huminstoffe (HS). HS sind Abbauprodukte pflanzlichen und tierischen Gewebes, die durch eine Kombination von chemischen und biologischen Ab- und Umbauprozessen entstehen. Bedingt durch ihre Genese stellen HS außerordentlich heterogene Stoffsysteme dar, die eine Palette von verschiedenartigen Wechselwirkungen mit Schadstoffen zeigen. Die Untersuchung der fundamentalen Wechselwirkungsmechanismen stellt ebenso wie deren quantitative Beschreibung h{\"o}chste Anforderungen an die Untersuchungsmethoden. Zur qualitativen und quantitativen Charakterisierung der Wechselwirkungen zwischen HS und Xenobiotika werden demnach analytische Methoden ben{\"o}tigt, die bei der Untersuchung von extrem heterogenen Systemen aussagekr{\"a}ftige Daten zu liefern verm{\"o}gen. Besonders spektroskopische Verfahren, wie z.B. lumineszenz-basierte Verfahren, besitzen neben der hervorragenden Selektivit{\"a}t und Sensitivit{\"a}t, auch eine Multidimensionalit{\"a}t (bei der Lumineszenz sind es die Beobachtungsgr{\"o}ßen Intensit{\"a}t IF, Anregungswellenl{\"a}nge lex, Emissionswellenl{\"a}nge lem und Fluoreszenzabklingzeit tF), die es gestattet, auch heterogene Systeme wie HS direkt zu untersuchen. Zur Charakterisierung k{\"o}nnen sowohl die intrinsischen Fluoreszenzeigenschaften der HS als auch die von speziell eingef{\"u}hrten Lumineszenzsonden verwendet werden. In beiden F{\"a}llen werden die zu Grunde liegenden fundamentalen Konzepte der Wechselwirkungen von HS mit Xenobiotika untersucht und charakterisiert. F{\"u}r die intrinsische Fluoreszenz der HS konnte gezeigt werden, dass neben molekularen Strukturen besonders die Verkn{\"u}pfung der Fluorophore im Gesamt-HS-Molek{\"u}l von Bedeutung ist. Konformative Freiheit und die Nachbarschaft zu als Energieakzeptor fungierenden HS-eigenen Gruppen sind wichtige Komponenten f{\"u}r die Charakteristik der HS-Fluoreszenz. Die L{\"o}schung der intrinsischen Fluoreszenz durch Metallkomplexierung ist demnach auch das Resultat der ver{\"a}nderten konformativen Freiheit der HS durch die gebundenen Metallionen. Es zeigte sich, dass abh{\"a}ngig vom Metallion sowohl L{\"o}schung als auch Verst{\"a}rkung der intrinsischen HS-Fluoreszenz beobachtet werden kann. Als extrinsische Lumineszenzsonden mit wohl-charakterisierten photophysikalischen Eigenschaften wurden polyzyklische aromatische Kohlenwasserstoffe und Lanthanoid-Ionen eingesetzt. Durch Untersuchungen bei sehr niedrigen Temperaturen (10 K) konnte erstmals die Mikroumgebung von an HS gebundenen hydrophoben Xenobiotika untersucht werden. Im Vergleich mit Raumtemperaturexperimenten konnte gezeigt werden, dass hydrophobe Xenobiotika an HS-gebunden in einer Mikroumgebung, die in ihrer Polarit{\"a}t analog zu kurzkettigen Alkoholen ist, vorliegen. F{\"u}r den Fall der Metallkomplexierung wurden Energietransferprozesse zwischen HS und Lanthanoidionen bzw. zwischen verschiedenen, gebundenen Lanthanoidionen untersucht. Basierend auf diesen Messungen k{\"o}nnen Aussagen {\"u}ber die beteiligten elektronischen Zust{\"a}nde der HS einerseits und Entfernungen von Metallbindungsstellen in HS selbst angeben werden. Es ist dabei zu beachten, dass die Experimente in L{\"o}sung bei realen Konzentrationen durchgef{\"u}hrt wurden. Aus Messung der Energietransferraten k{\"o}nnen direkte Aussagen {\"u}ber Konformations{\"a}nderungen bzw. Aggregationsprozesse von HS abgeleitet werden.}, subject = {Fluoreszenz}, language = {de} }