@article{AlrefaiMondalWrucketal.2019, author = {Alrefai, Anas and Mondal, Suvendu Sekhar and Wruck, Alexander and Kelling, Alexandra and Schilde, Uwe and Brandt, Philipp and Janiak, Christoph and Schoenfeld, Sophie and Weber, Birgit and Rybakowski, Lawrence and Herrman, Carmen and Brennenstuhl, Katlen and Eidner, Sascha and Kumke, Michael Uwe and Behrens, Karsten and G{\"u}nter, Christina and M{\"u}ller, Holger and Holdt, Hans-J{\"u}rgen}, title = {Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties}, series = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, volume = {94}, journal = {Journal of Inclusion Phenomena and Macrocyclic Chemistry}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {1388-3127}, doi = {10.1007/s10847-019-00926-6}, pages = {155 -- 165}, year = {2019}, abstract = {By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework.}, language = {en} } @article{BurekEidnerKukeetal.2018, author = {Burek, Katja and Eidner, Sascha and Kuke, Stefanie and Kumke, Michael Uwe}, title = {Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight}, series = {Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy}, volume = {191}, journal = {Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy}, publisher = {Elsevier}, address = {Oxford}, issn = {1386-1425}, doi = {10.1016/j.saa.2017.09.012}, pages = {36 -- 49}, year = {2018}, abstract = {The luminescence of Lanthanide(Ill) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and.Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(Ill) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K <= T <= 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M <= 1 <= 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.}, language = {en} } @article{KukeMarmodeeEidneretal.2010, author = {Kuke, S. and Marmodee, Bettina and Eidner, Sascha and Schilde, Uwe and Kumke, Michael Uwe}, title = {Intramolecular deactivation processes in complexes of salicylic acid or glycolic acid with Eu(III)}, issn = {0584-8539}, year = {2010}, abstract = {The complexation of Eu(III) by 2-hydroxy benzoic acid (2HB) or glycolic acid (GL) was investigated using steady- state and time-resolved laser spectroscopy. Experiments were carried out in H2O as well as in D2O in the temperature range of View the MathML source. The Eu(III) luminescence spectra and luminescence decay times were evaluated with respect to the temperature dependence of (i) the luminescence decay time ;, (ii) the energy of the View the MathML source transition, (iii) the width of the View the MathML source transition, and (iv) the asymmetry ratio calculated from the luminescence intensities of the View the MathML source and View the MathML source transition, respectively. The differences in ligand-related luminescence quenching are discussed. Based on the temperature dependence of the luminescence decay times an activation energy for the ligand-specific non-radiative deactivation in Eu(III)-2HB or Eu(III)-GL complexes was determined. It is stressed that ligand-specific quenching processes (other than OH quenching induced by water molecules) need to be determined and considered in detail, in order to extract speciation- relevant information from luminescence data (e.g., estimation of the number of water molecules nH2O in the first coordination sphere of Eu(III)). In case of 2HB, conclusions drawn from the evaluation of the Eu(III) luminescence are compared with results of a X-ray structure analysis.}, language = {en} } @misc{KumkeEidner2005, author = {Kumke, Michael Uwe and Eidner, Sascha}, title = {Fluorescence and energy transfer processes of humic substances and related model compounds in terbium complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12255}, year = {2005}, abstract = {The fluorescence properties and the fluorescence quenching by Tb3+ of substituted benzoic acid were investigated in solution at different pH. The substituted benzoic acids were used as simple model compounds for chromophores present in humic substances (HS). It is shown that the fluorescence properties of the model compounds resemble fluorescence of HS quite well. A major factor determining the fluorescence of model compounds are proton transfer reactions in the electronically excited state. It is intriguing that the fluorescence of the model compounds was almost not quenched by Tb3+ while the HS fluorescence was decreased very effectively. From our results we concluded that proton transfer reactions as well as conformational reorientation processes play an important role in the fluorescence of HS. The luminescence of bound Tb3+ was sensitized by an energy transfer step upon excitation of the model compounds and of HS, respectively. For HS the observed sensitization was dependent on its origin indicating differences 1) in the connection between chromophores and binding sites and 2) in the energy levels of the chromophore triplet states. Hence, the observed sensitization of the Tb3+ luminescence could be useful to characterize structural differences of HS in solution. Interlanthanide energy transfer between Tb3+ and Nd3+ was used to determine the average distance R between both ions using the well-known formalism of luminescence resonance energy transfer. R was dependent on the origin of the HS reflecting the difference in structure. The value of Rmin seemed to be a unique feature of the HS. It was further found that upon variation of the pH R also changed. This demonstrates that the measurement of interlanthanide energy transfer can be used as a direct method to monitor conformational changes in HS.}, language = {en} } @article{KumkeEidnerKrueger2005, author = {Kumke, Michael Uwe and Eidner, Sascha and Kr{\"u}ger, Tobias}, title = {Fluorescence quenching and luminescence sensitization in complexes of Tb3+ and Eu3+ with humic substances}, year = {2005}, abstract = {Intrinsic fluorescence quenching of humic substances (HS) and the sensitization of Ln(3+) luminescence (Ln3+ Tb3+, Eu3+) in HS complexes were investigated. Both measurements yielded complementary information on the complexation of metals by HS. Large differences between fulvic acids(FA)and humic acids (HA) were found. From time-resolved luminescence measurements it is concluded that a combination of energy transfer and energy back transfer between HS and Ln(3+) is responsible for the observed luminescence decay characteristics. In the case of Eu3+, an additional participation of charge-transfer states is suggested. A new concept for the evaluation of the sensitized luminescence decays of Ln(3+) was adapted}, language = {en} } @article{LippoldEidnerKumkeetal.2017, author = {Lippold, Holger and Eidner, Sascha and Kumke, Michael Uwe and Lippmann-Pipke, Johanna}, title = {Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {197}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2016.10.019}, pages = {62 -- 70}, year = {2017}, abstract = {Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of Tb-160 as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable Tb-159 or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of Tb-160 was introduced prior to saturation with Tb-159, the expected partial desorption of Tb-160 occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive transport models.}, language = {en} } @article{LippoldEidnerKumkeetal.2012, author = {Lippold, Holger and Eidner, Sascha and Kumke, Michael Uwe and Lippmann-Pipke, Johanna}, title = {Diffusion, degradation or on-site stabilisation - identifying causes of kinetic processes involved in metal-humate complexation}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {27}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2011.11.001}, pages = {250 -- 256}, year = {2012}, abstract = {The applicability of equilibrium models for humic-bound transport of toxic or radioactive metals is affected by kinetic processes leading to an increasing inertness of metal-humic complexes. The chemical background is not yet understood. It is widely believed that bound metals undergo an in-diffusion process within the humic colloids, changing from weaker to stronger binding sites. This work is focussed on the competition effect of Al(III) on complexation of Tb(III) or Eu(III) as analogues of trivalent actinides. By using ion exchange and spectroscopic methods, their bound fractions were determined for solutions of Al and humic acid that had been pre-equilibrated for different periods of time. Whilst the amount of bound Al remained unchanged, its blocking effect was found to increase over a time frame of 2 days, which corresponds to the kinetics of the increase in complex inertness reported in most pertinent studies. Thus, the derived "diffusion theory'' turned out to be inapplicable, since it cannot explain an increase in competition for the "initial'' sites. A delayed degradation of polynuclear species (as found for Fe) does not occur. Consequently, the temporal changes must be based on structural rearrangements in the vicinity of bound Al, complicating the exchange or access. Time-dependent studies by laser fluorescence spectroscopy (steady-state and time-resolved) yielded evidence of substantial alterations, which were, however, immediately induced and did not show any significant trend on the time scale of interest, suggesting that the stabilisation process is based on comparatively moderate changes.}, language = {en} } @article{MarangEidnerKumkeetal.2009, author = {Marang, Laura and Eidner, Sascha and Kumke, Michael Uwe and Benedetti, Marc F. and Reiller, Pascal E.}, title = {Characterization of competitive binding of Eu(III)/Cu(II) and Eu(III)/Ca(II) to Gorleben humic acid}, issn = {0016-7037}, doi = {10.1016/j.gca.2009.05.011}, year = {2009}, language = {en} } @article{MarangEidnerKumkeetal.2009, author = {Marang, Laura and Eidner, Sascha and Kumke, Michael Uwe and Benedetti, Marc F. and Reiller, Pascal E.}, title = {Spectroscopic characterization of the competitive binding of Eu(III), Ca(II) and Cu(II) to a sedimentary originated humic acid}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2009.03.003}, year = {2009}, abstract = {The competition between REE, alkaline earth and d-transition metals for organic matter binding sites is still an open field of research; particularly, the mechanisms governing these phenomena need to be characterized in more detail. In this study, we examine spectroscopically the mechanisms of competitive binding of Eu(III)/Cu(II) and Eu(III)/ Ca(II) pair to Gorleben humic acid (HA), as previously proposed in the framework of the NICA-Donnan model. The evolution of time-resolved laser induced luminescence spectra of humic-complexed Eu(Ill) showed two strikingly different environments for a comparable bound proportion for Cu(II) and Ca(II). Cu(II) seems to compete more effectively with Eu(III) inducing its release into the Donnan phase, and into the bulk solution as free Eu3+. This is evidenced both by the shapes of the spectra and by the decrease in the luminescence decay times. In contrast with that, Ca(II) induces a modification of the HA structure, which enhances the luminescence of humic-bound Eu(III), and causes a minor modification of the chemical environment of the complexed rare earth ion.}, language = {en} } @article{MarangReillerEidneretal.2008, author = {Marang, Laura and Reiller, Pascal E. and Eidner, Sascha and Kumke, Michael Uwe and Benedetti, Marc F.}, title = {Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances}, doi = {10.1021/Es702858p}, year = {2008}, abstract = {In an area that contains high concentrations of natural organic matter, it is expected that it plays an important role on the behavior of rare earth elements (REE), like europium, and of trivalent actinides. Competitive interactions with H+, inorganic species, major cations, e.g. Ca(II) or Mg(II), could influence these metals transport and bioavailability. Competitive experiments between cations, which can bind differently to humic substances and Eu3+,will bring an improved understanding of the competitive mechanisms. The aim of this study is to acquire data for Eu(III)/Cu(II) and Eu(III)/Ca(II) competitive binding to a sedimentary originated humic acid (Gorleben, Germany). The NICA-Donnan parameters for Ca2+, Cu2+, and Eu3+ obtained from competitive binding experiments using Ca2+ or Cu2+ ion selective electrodes were used to model time-resolved laser fluorescence spectroscopy (TRLFS) measurements. Eu3+ and Cu2+ are in direct competition for the same type of sites,whereas Ca2+ has an indirect influence through electrostatic binding.}, language = {en} }