@article{OttoMareljaSchoofsetal.2018, author = {Otto, Nils and Marelja, Zvonimir and Schoofs, Andreas and Kranenburg, Holger and Bittern, Jonas and Yildirim, Kerem and Berh, Dimitri and Bethke, Maria and Thomas, Silke and Rode, Sandra and Risse, Benjamin and Jiang, Xiaoyi and Pankratz, Michael and Leimk{\"u}hler, Silke and Kl{\"a}mbt, Christian}, title = {The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-05645-z}, pages = {12}, year = {2018}, abstract = {Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity.}, language = {en} } @misc{OttoMareljaSchoofsetal.2018, author = {Otto, Nils and Marelja, Zvonimir and Schoofs, Andreas and Kranenburg, Holger and Bittern, Jonas and Yildirim, Kerem and Berh, Dimitri and Bethke, Maria and Thomas, Silke and Rode, Sandra and Risse, Benjamin and Jiang, Xiaoyi and Pankratz, Michael and Leimk{\"u}hler, Silke and Kl{\"a}mbt, Christian}, title = {The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {975}, issn = {1866-8372}, doi = {10.25932/publishup-42620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426205}, pages = {14}, year = {2018}, abstract = {Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity.}, language = {en} } @phdthesis{Rode2007, author = {Rode, Michael}, title = {Analysis and modelling of nutrient transport and transformation processes on the catchment scale}, address = {Potsdam}, pages = {III, 230 S.: Ill., graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Rode2007, author = {Rode, Michael}, title = {Analysis and modelling of nutrient transport and transformation processes on the catchment scale}, address = {Potsdam}, pages = {230 S., I-III, graph., Darst.}, year = {2007}, language = {en} } @article{MusolffSchmidtRodeetal.2016, author = {Musolff, Andreas and Schmidt, Christian and Rode, Michael and Lischeid, Gunnar and Weise, Stephan M. and Fleckenstein, Jan H.}, title = {Groundwater head controls nitrate export from an agricultural lowland catchment}, series = {Advances in water resources}, volume = {96}, journal = {Advances in water resources}, publisher = {Elsevier}, address = {Oxford}, issn = {0309-1708}, doi = {10.1016/j.advwatres.2016.07.003}, pages = {95 -- 107}, year = {2016}, abstract = {Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZhangYangJomaaetal.2020, author = {Zhang, Xiaolin and Yang, Xiaoqiang and Jomaa, Seifeddine and Rode, Michael}, title = {Analyzing impacts of seasonality and landscape gradient on event-scale nitrate-discharge dynamics based on nested high-frequency monitoring}, series = {Journal of hydrology}, volume = {591}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.125585}, pages = {12}, year = {2020}, abstract = {Increasingly available high-frequency data during storm events, when hydrological dynamics most likely activate nitrate storage-flux exchanges, reveal insights into catchment nitrate dynamics. In this study, we explored impacts of seasonality and landscape gradients on nitrate concentration-discharge (C-Q) hysteresis patterns in the Selke catchment, central Germany, which has heterogeneous combinations of meteorological, hydrogeological and land use conditions. Three nested gauging stations established along the main Selke River captured flow and nitrate export dynamics from the uppermost subcatchment (mixed forest and arable land), middle subcatchment (pure steep forest) and lowermost subcatchment (arable and urban land). We collected continuous high-frequency (15-min) discharge and nitrate concentration data from 2012 to 2017 and analyzed the 223 events detected at all three stations. A dominant hysteresis pattern in the uppermost and middle subcatchments was counter-clockwise and combined with an accretion effect, indicating many proximal and mobilized distal nitrate sources. However, 66\% of all events at the catchment outlet experienced a dilution effect, possibly due to mechanisms that vary seasonally. During wetting/wet periods (October-March), it was combined mainly with a counter-clockwise pattern due to the dominance of event runoff volume from the uppermost and middle subcatchments. During drying/dry periods (April-September), however, it was combined mainly with a clockwise pattern due to occasional quick surface flows from lowland near-stream urban areas. In addition, the clockwise hysteresis occurred mainly from May-October during mostly drying/dry periods at all three sites, indicating little distal nitrate transport in response to the low terrestrial hydrological connectivity, especially in the lowermost dry and flat sub-catchment. This comprehensive analysis (i.e., clockwise vs. counter-clockwise, accretion vs. dilution) enables in-depth analysis of nitrate export mechanisms during certain periods under different landscape conditions. Specific combination of C-Q relationships could identify target locations for agricultural management actions that decrease nitrate output. Therefore, we strongly encourage long-term multisite and high-frequency monitoring strategies in heterogeneous nested catchment(s), which can help understand process mechanisms, generate data for physical-based water-quality modeling and provide guidance for water and agricultural management.}, language = {en} } @article{KamjunkeRodeBaborowskietal.2021, author = {Kamjunke, Norbert and Rode, Michael and Baborowski, Martina and Kunz, Julia Vanessa and Zehner, Jakob and Borchardt, Dietrich and Weitere, Markus}, title = {High irradiation and low discharge promote the dominant role of phytoplankton in riverine nutrient dynamics}, series = {Limnology and oceanography / American Society of Limnology and Oceanography}, volume = {66}, journal = {Limnology and oceanography / American Society of Limnology and Oceanography}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.11778}, pages = {2648 -- 2660}, year = {2021}, abstract = {Rivers play a relevant role in the nutrient turnover during the transport from land to ocean. Here, highly dynamic planktonic processes are more important compared to streams making it necessary to link the dynamics of nutrient turnover to control mechanisms of phytoplankton. We investigated the basic conditions leading to high phytoplankton biomass and corresponding nutrient dynamics in eutrophic, 8th order River Elbe (Germany). In a first step, we performed six Lagrangian sampling campaigns in the lower river section at different hydrological conditions. While nutrient concentrations remained high at low algal densities in autumn and at moderate discharge in summer, high algal concentrations occurred at low discharge in summer. Under these conditions, concentrations of silica and nitrate decreased and rates of nitrate assimilation were high. Soluble reactive phosphorus was depleted and particulate phosphorus increased inversely. Rising molar C:P ratios of seston indicated a phosphorus limitation of phytoplankton, so far rarely observed in eutrophic large rivers. Global radiation combined with mixing depth had a strong predictive power to explain maximum chlorophyll concentration. In a second step, we estimated nutrient turnover exemplarily for N during the campaign with the lowest discharge based on mass balances and metabolism-based process measurements. Mass balance calculations revealed a total nitrate uptake of 423 mg N m(-2)d(-1). Increasing phytoplankton density dominantly explained whole river gross primary production and related assimilatory nutrient uptake. In conclusion, riverine nutrient uptake strongly depends on the growth conditions for phytoplankton, which are favored at high irradiation and low discharge.}, language = {en} } @book{BronstertThiekenMerzetal.2004, author = {Bronstert, Axel and Thieken, Annegret and Merz, Bruno and Rode, Michael and Menzel, Lucas}, title = {Wasser- und Stofftransport in heterogenen Einzugsgebieten : Beitr{\"a}ge zum Tag der Hydrologie 2004, 22./ 23. M{\"a}rz 2004 in Potsdam ; Bd. 1 Vortr{\"a}ge}, volume = {5}, publisher = {ATV-DVWK}, address = {Hennef (Sieg)}, isbn = {3-937758-18-6}, pages = {315 S.}, year = {2004}, language = {de} } @book{BronstertThiekenMerzetal.2004, author = {Bronstert, Axel and Thieken, Annegret and Merz, Bruno and Rode, Michael and Menzel, Lucas}, title = {Wasser- und Stofftransport in heterogenen Einzugsgebieten : Beitr{\"a}ge zum Tag der Hydrologie 2004, 22./ 23. M{\"a}rz 2004 in Potsdam ; Bd. 2 Poster}, publisher = {ATV-DVWK}, address = {Hennef}, isbn = {3-937758-18-6}, pages = {221 S.}, year = {2004}, language = {de} }